ad590测温电路

AD技术

10人已加入

描述

ad590测温电路,AD590 是美国模拟器件公司生产的单片集成两端感温电流源。它的主要特性如下:
1、流过器件的电流( mA)等于器件所处环境的热力学温度(开
尔文)度数,即:
=1
T
IT mA/K
式中: T I —流过器件(AD590)的电流,单位为mA;
T—热力学温度,单位为K。
2、AD590 的测温范围为-55℃~+150℃。
3、AD590 的电源电压范围为4V~30V。电源电压可在4V~6V
范围变化,电流T I 变化1mA,相当于温度变化1K。AD590 可以承
受44V 正向电压和20V 反向电压,因而器件反接也不会被损坏。
4、输出电阻为710MW。
1 AD590的功能及特性
  AD590是电流型温度传感器,通过对电流的测量可得到所需要的温度值。根据特性分挡,AD590的后缀以I,J,K,L,M表示。AD590L,AD590M一般用于精密温度测量电路,其电路外形如图1所示,它采用金属壳3脚封装,其中1脚为电源正端V+;2脚为电流输出端I0;3脚为管壳,一般不用。集成温度传感器的电路符号如图2所示。

AD

    AD590的主特性参数如下:
   
工作电压:4~30V;
    工作温度:-55~+150℃;
    保存温度:-65~+175℃;
    正向电压:+44V;
    反向电压:-20V;
    焊接温度(10秒):300℃;
    灵敏度:1μA/K。
2 AD590的工作原理
  在被测温度一定时,AD590相当于一个恒流源,把它和5~30V的直流电源相连,并在输出端串接一个1kΩ的恒值电阻,那么,此电阻上流过的电流将和被测温度成正比,此时电阻两端将会有1mV/K的电压信号。其基本电路如图3所示。

AD

  图3是利用ΔUBE特性的集成PN结传感器的感温部分核心电路。其中T1、T2起恒流作用,可用于使左右两支路的集电极电流I1和I2相等;T3、T4是感温用的晶体管,两个管的材质和工艺完全相同,但T3实质上是由n个晶体管并联而成,因而其结面积是T4的n倍。T3和T4的发射结电压UBE3和UBE4经反极性串联后加在电阻R上,所以R上端电压为ΔUBE。因此,电流I1为:
    I1=ΔUBE/R=(KT/q)(lnn)/R
  对于AD590,n=8,这样,电路的总电流将与热力学温度T成正比,将此电流引至负载电阻RL上便可得到与T成正比的输出电压。由于利用了恒流特性,所以输出信号不受电源电压和导线电阻的影响。图3中的电阻R是在硅板上形成的薄膜电阻,该电阻已用激光修正了其电阻值,因而在基准温度下可得到1μA/K的I值。

AD

AD590内部的电路

  图4所示是AD590的内部电路,图中的T1~T4相当于图3中的T1、T2,而T9,T11相当于图3中的T3、T4。R5、R6是薄膜工艺制成的低温度系数电阻,供出厂前调整之用。T7、T8,T10为对称的Wilson电路,用来提高阻抗。T5、T12和T10为启动电路,其中T5为恒定偏置二极管。
  T6可用来防止电源反接时损坏电路,同时也可使左右两支路对称。R1,R2为发射极反馈电阻,可用于进一步提高阻抗。T1~T4是为热效应而设计的连接方式。而C1和R4则可用来防止寄生振荡。该电路的设计使得T9,T10,T11三者的发射极电流相等,并同为整个电路总电流I的1/3。T9和T11的发射结面积比为8:1,T10和T11的发射结面积相等。
  T9和T11的发射结电压互相反极性串联后加在电阻R5和R6上,因此可以写出:
    ΔUBE=(R6-2 R5)I/3
  R6上只有T9的发射极电流,而R5上除了来自T10的发射极电流外,还有来自T11的发射极电流,所以R5上的压降是R5的2/3。
  根据上式不难看出,要想改变ΔUBE,可以在调整R5后再调整R6,而增大R5的效果和减小R6是一样的,其结果都会使ΔUBE减小,不过,改变R5对ΔUBE的影响更为显著,因为它前面的系数较大。实际上就是利用激光修正R5以进行粗调,修正R6以实现细调,最终使其在250℃之下使总电流I达到1μA/K。
3 数字显示温度计的设计
  AD590具有线性优良、性能稳定、灵敏度高、无需补偿、热容量小、抗干扰能力强、可远距离测温且使用方便等优点。可广泛应用于各种冰箱、空调器、粮仓、冰库、工业仪器配套和各种温度的测量和控制等领域。
  下面给出用AD590构成数字显示温度计的设计过程。
3.1 测温电路的设计
  在设计测温电路时,首先应将电流转换成电压。由于AD590为电流输出元件,它的温度每升高1K,电流就增加1μA。当AD590的电流通过一个10kΩ的电阻时,这个电阻上的压降为10mV,即转换成10mV/K,为了使此电阻精确(0.1%),可用一个9.6kΩ的电阻与一个1kΩ电位器串联,然后通过调节电位器来获得精确的10kΩ。图5所示是一个电流/电压和绝对/摄氏温标的转换电路,其中运算放大器A1被接成电压跟随器形式,以增加信号的输入阻抗。而运放A2的作用是把绝对温标转换成摄氏温标,给A2的同相输入端输入一个恒定的电压(如1.235V),然后将此电压放大到2.73V。这样,A1与A2输出端之间的电压即为转换成的摄氏温标。

AD

  将AD590放入0℃的冰水混合溶液中,A1同相输入端的电压应为2.73V,同样使A2的输出电压也为2.73V,因此A1与A2两输出端之间的电压:
  2.73-2.73=0V即对应于0℃。
3.2 A/D转换和显示电路的设计
  设计A/D转换和显示电路具有两种方案。分述如下:
    (1)用A/D转换器MC14433实现
  首先将AD590的输出电流转换成电压,由于此信号为模拟信号,因此,要进行数码显示,还需将此信号转换成数字信号。采用MC14433的转换电路如图6所示。此电路的作用是通过A/D转换器MC14433将模拟信号转换成数字信号,以控制显示电路。其中MC14511为译码/锁存/驱动电路,它的输入为BCD码,输出为七段译码。LED数码显示由MC14433的位选信号DS1~DS4通过达林顿阵列MC1413来驱动,并由MC14433的DS1、Q2端来控制“+”、“-”温度的显示。当DS1=1,Q2=1时,显示为正;Q2=0时,显示为负。

AD
图6 A/D转换和数码显示电路框图

    (2)用ICL7106来实现
  采用ICL7106的A/D转换及LCD显示电路框图如图7所示。其中,ICL7106是3位半显示的A/D转换电路,它内含液晶显示驱动电路,可用来进行A/D转换和LCD显示驱动。

AD

4 结束语
  温度传感器的应用范围很广,它不仅广泛应用于日常生活中,而且也大量应用于自动化和过程检测控制系统。
  温度传感器的种类很多,根据现场使用条件,选择恰当的传感器类型才能保证测量的准确可靠,并同时达到增加使用寿命和降低本钱的作用。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 相关推荐
  • AD

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分