×

多芯光纤中的超连续产生

消耗积分:0 | 格式:pdf | 大小:0.48 MB | 2020-11-26

王强

分享资料个

  多芯光纤是一种新型光纤,这种光纤的包层中存在距离较近的多根纤芯,纤芯之间可产生较强的耦合,从而使各个纤芯内的光场成为一个整体,可用于光放大、脉冲压缩、超连续产生、光场调制、光子弹产生等过程。正六边形 7 芯光纤(横截面如图 1),作为最常见的多芯光纤之一,可用于超连续产生,本篇文章通过数值模拟的方式,验证了普通的阶跃折射率 7 芯光纤可以产生超连续谱。

  作者假定不同纤芯之间仅仅存在线性耦合,从而得到了描述脉冲在 7 芯光纤中演化的耦合非线性薛定谔方程(式 1,右边三行分别代表芯自身的色散、自身非线性和芯间线性耦合)。在线性情况下,该方程组的 7 个本征解代表在 7 芯光纤中能够稳定传播的 7 个超模式。每个模式在光纤中都有着不同的强度和传播速度,如图 2 所示,其中图 2(a)表示电场强度在光纤中的分布,图 2(b)表示每种超模式的传播常数,其中 \beta(\omega)代表单模光纤传播常数,\kappa(\omega)代表线性耦合系数。

  当初始脉冲(脉冲宽度为 100fs,功率 15kW,中心波长 1.55μm)输入到内芯(也就是图 2(a)中的 1 号芯)时,作者讨论了纤芯间距对超连续产生的影响。在模拟中,所有芯径假设为 6μm。(1)若此时纤芯距离很近,芯距为 12μm,纤芯与纤芯之间处于强耦合状态,脉冲演化如图 3 所示:第一行代表中间纤芯处脉冲在时域和频域的演化,第二行代表外围纤芯处脉冲在时域和频域的演化。由图可见,初始脉冲会迅速激发出低能量的模式 A 和高能量的模式 F。然而,强耦合状态下模式 A 与模式 F 的传播速度差异很大,脉冲会迅速分裂成时间上不重合的两个孤子。模式 A 和 F 分别独立的进行自身的拉曼孤子自频移,并产生色散波(都是模式 A,可能是 A 模式才满足相位匹配导致),且内外芯都能产生色散波,频率有略微差异)。由于模式 F 能量更高,模式 F 的红移量要大于模式 A。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !