基于AD9854的非线性调频脉压雷达信号的产生技术

通信新闻

20人已加入

描述

基于AD9854的非线性调频脉压雷达信号的产生技术

1 引言

虽然线性调频信号在提高雷达性能方面已经展现了显著的优势,但其脉冲压缩时会有较高的旁瓣,不便于邻近弱目标的检测。若采用失配加窗的方法抑制距离旁瓣,又会引起信噪比损失,降低雷达的距离分辨力。非线性调频信号因其固有的距离旁瓣较低,无需加权就可获得很高的主旁瓣比、较窄的主瓣宽度和良好的多普勒响应能力。另外,从雷达信号的低截获概率方面考虑,由于时宽带宽的平方根与截获因子成反比,脉冲压缩信号也是实现雷达低截获概率的主要技术措施之一,所以研究产生非线性调频信号具有重要的现实意义。采用现今流行的DDS器件(AD9854),做为主控制器件通过分段线性折线逼近法硬件,产生非线性调频信号。

2 基本原理

2.1 S型调频函数设计

非线性调频函数设计主要是S型调频函数的设计,其产生的主要方法是基于各种窗函数进行波形设计,常用的窗函数有海明窗(Hamming)、汉宁窗(Hanning)、余弦4次方窗,布莱克曼(Blackman)窗等,这里采用海明窗设计。

利用相位逗留原理,海明窗的窗函数可得到信号的群延时为:
雷达信

式中,k为常数,且满足雷达信为信号调频带宽。

式(1)求反函数,得到信号的调频函数f(t)=T-1(f),因而相位函数为:
雷达信

实际上,很难将式(1)的反函数写成解析形式,而只能得到其数值反函数,这样式(2)的连续积分变为数值积分,故非线性调频信号的产生则基于数值方法实现。

设置信号的各参数:时宽τ=20μs,带宽B=4 M,采样频率fS=2B,2(f)=0.54+0.46cos(2πf/B),然后对信号脉压仿真,图1给出非线性调频信号不加窗和加窗后的脉压效果对经,可看出,非线性调频NLFM的脉压具有良好的旁瓣抑制,加窗后的脉压只比不加窗减少了约9 dB。
雷达信

2.2 DDS原理

图2为DDS的基本原理框图,它主要由标准参考频率源、相位累加器、波形存储器、数模转换器等组成。其中,参考频率源是一个高稳定的晶体振荡器,其输出信号用于DDS中各部件同步工作。DDS作为一种频率合成器,应用取样原理。即以较高的参考频率作为取样时钟,在时钟的每个周期内,希望输出得到频率波形取样值。输出取样值的大小由相位累加器输出的相位决定,而输出波形的频率由送入DDS的频率控制字FTW决定。
雷达信

3 硬件结构设计及软件实现

3.1 AD9854简介

AD9854数字合成器是采用先进的DDS技术,并有2个内部高速、高性能的正交D/A转换器实现数字可编程的I和Q路合成器功能。当AD9854作为精确的时钟源时,它能产生高稳定度,频率、相位、幅度均可编程的正弦和余弦输出且能用作一个灵活的本振,应用通信、雷达等领域。AD9854的高速DDS内核提供了48位的频率分辨率(当SYSCLK为300 MHz时,调节分辨率1Hz),相位截断到17位,保证良好的SFDR。AD9854的电路结构允许产生频率达到150 MHz的正交输出信号,它能在高达100 MHz/s更新频率下进行数字调节。

3.2 硬件设计方案

信号产生系统硬件主要有AD9854,ADSP21065L,带通滤波器,FPGA噪声产生电路,DDS输出中频信号增益控制,噪声信号相加电路,以及相关的时钟,电源,FPGA控制等功能单元。DDS模块主要由AD9854,ADSP21065L和相应的FPGA控制逻辑构成。ADSP21065L根据FPGA的控制时序来设置DDS的工作方式和控制字。图3为信号产生系统的硬件逻辑框图。
雷达信

具体模块功能说明:

(1)DDS控制模块 ADSP21065L外部输入20 MHz时钟,最高工作在60 MHz,主要控制AD9854,向AD9854写控制字,中断输入IRQ0~IRQ2接FPGA,外部采用上拉电平。其中,一个作为雷达的重频周期信号,一个作为雷达波形的时序信号,而另一个保留。Flag0~Flag11是双向输入引脚,主要为AD9854产生3个控制信号,也可作为外部的输入控制信号,要求外部可控。ADSP-21065L的外部供电电源为3.3 V,采用板上(REG1117)直流变换器实现。ADSP21065L的加载采用EPROM(27C512)方式,用JTAG调试。FPGA采用Cyclone系列的EP1C3T144,主要产生各种控制信号和时序信号。FPGA的输出信号有:输出 1路复位信号到DSP和AD9854,AD9854的控制信号CS、WR、UPCLK和F/B/H。20 MHz的DSP时钟信号和40 MHz的AD9854时钟信号。

(2)DDS信号产生模块 DDS AD9854的最高工作频率是300 MHz,它主要接收ADSP-21065L的控制字,产生脉冲雷达波形。当外部输入40 MHz时,内部频率倍增器设置其工作频率为200 MHz。其工作电压3.3 V,也可由外部输入的直流电源经过本板的两片REG1117型DC-DC变换器变换得到。AD9854有5种可编程的工作模式,选择一种模式需要编程控制寄存器(并行地址1FH)中的mode0,mode1,mode2。5种可编程的工作模式为:单音调(模式000);非斜升的FSK(模式001);斜升FSK(模式010);线性调频脉冲(模式011);相位编码(模式100)。对于NLFM信号,采用线性调频折线逼近式实现,如图4所示。因此,将调频区域分为几段,每段用不同的线性调频逼近,即第一段更新频率字,后面每段起更新频率增量字,时间增量字就能实现折线型NLFM信号。
雷达信

(3)电源模块 该信号产生模块的输入电源具有+5 V和-5 V,需要产生3.3 V,1.5 V,利用5片REG1117实现。其中1片为DSP,2片为AD9854,2片分别为FPGA产生3.3 V和1.5 V。若其余的I/O设备也需使用3.3 V,则与FPGA共用。

3.3 软件实现方法

在确定线性调频LFM信号或非线性调频NLFM信号的时频曲线后,根据信号的形式及附带参数,设置并实时控制DDS等硬件产生所需的调频信号。通过分析可知AD9854具有线性调频产生模式,所以只需设置线性调频信号的其模式控制字、频率控制字、频率增量字、时间增量字,并在适当的时间停止输出,就可得到所需时宽的LFM信号。但对于NLFM,需要对其调频函数进行分段、逼近才能得到。常用的方法有阶梯形逼近和折线形逼近两种。在同样采样间隔条件下,折线形逼近的误差要小的多,因为根据曲线多项式展开拟合理论分析,折线形逼近的误差是二次项以上的成分,而阶梯形逼近的误差是一次项以上的成分。并且对于要产生的反S型NLFM信号,中间一段接近线性调频,所以只需对其两端细化处理,而中间部分线性处理,这样在尽可能少的分段情况下得到高精度的NLFM信号,减少频繁更新DDS控制字而带来的更新延时。图5为理想信号脉压和近似信号脉压的对比。
雷达信

4 结语

实验结果表明,近似后的信号主旁瓣比只降低5 dB,完全可达到所需的性能指标。从器件的选取考虑,由于AD9854为并行数据操作,其速度远远高于串行操作,实现了更高频率变化的NLFM信号,同时,该器件具有48位的相位累加器字长,频率分辨率可达7.2x10-7Hz,这是传统频率合成技术所难以实现的。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分