一文了解碳化硅和氮化镓

电子说

1.2w人已加入

描述

上世纪五十年代以来,以硅(Si)材料为代表的第一代半导体材料取代了笨重的电子管引发了集成电路(IC)为核心的微电子领域迅速发展。然而,由于硅材料的带隙较窄、电子迁移率和击穿电场较低,Si在光电子领域和高频高功率器件方面的应用受到诸多限制,在高频下工作性能较差,不适用于高压应用场景,光学性能也得不到突破。

第二代半导体材料

第二代半导体材料是以砷化镓(GaAs)、锑化铟(InSb)为主的化合物半导体,其主要被用于制作高频、高速以及大功率电子器件,在卫星通讯、移动通讯以及光通讯等领域有较为广泛的应用。砷化镓和磷化铟半导体激光器成为光通信系统中的关键器件,同时砷化镓高速器件也开拓了光纤及移动通信的新产业。

第三代半导体材料性能优势明显

第三代半导体材料包括了以碳化硅(SiC)、氮化镓(GaN)为代表的宽禁带化合物半导体。第一二代半导体材料工艺已经逐渐接近物理极限,在微电子领域的摩尔定律开始逐步失效,而第三代半导体是可以超越摩尔定律的。

相比于第一代及第二代半导体材料,第三代半导体材料在高温、高耐压以及承受大电流等多个方面具备明显的优势,因而更适合于制作高温、高频、抗辐射及大功率器件。

在器件的性能对比上,GaN材料以及SiC材料在通态电阻以及击穿电压方面都具备较大的优势。

第三代半导体材料应用可以分为微电子以及光电子领域,具体可以细分为电力电子器件、微波射频、可见光通信、太阳能、半导体照明、紫外光存储、激光显示以及紫外探测器等领域,有望突破传统半导体技术的瓶颈,与第一代、第二代半导体技术互补,对节能减排、产业转型升级、催生新的经济增长点将发挥重要作用。

国家持续推出政策支持第三代半导体产业发展

国家对于第三代半导体产业发展提供了持续不断的政策方面的支持,2016年,国务院推出了《国务院关于印发“十三五”国家科技创新规划的通知》,其中首次提到要加快第三代半导体芯片技术与器件的研发;2019年6月商务部及发改委在鼓励外商投资名单中增加了支持引进SiC超细粉体外商企业;2019年11月工信部印发《重点新材料首批次应用示范指导目录》,其中GaN单晶衬底、功率器件用GaN外延片、SiC外延片,SiC单晶衬底等第三代半导体产品进入目录;2019年12月国务院在《长江三角洲区域—体化发展规划纲要》中明确要求加快培育布局第三代半导体产业,推动制造业高质量发展。

除了行业政策推动,在财税政策方面,第三代半导体同属于集成电路产业,同样享受国家对集成电路企业所得税优惠政策,先后包括2019年5月财政部及税务总局印发的《关于集成电路设计和软件产业企业所得税政策的公告》,针对依法成立且符合条件的集成电路设计企业和软件企业,在2018年12月31日前自获利年度起计算优惠期,第一年至第二年免征企业所得税,第三年至第五年按照25%的法定税率减半征收企业所得税,并享受至期满为止;并在2020年7月再次推出《新时期促进集成电路产业和软件产业高质量发展的若干政策》,对于国家鼓励的集成电路设计、装备、材料、封装、测试企业和软件企业,自获利年度起,第一年至第二年免征企业所得税,第三年至第五年按照25%的法定税率减半征收企业所得税。

除了国家层面的支持政策外,据CASA统计显示,2019年我国地方各级政府共计出台32项政策,进一步支持第三代半导体产业的发展,支持的方面包括集群培育、科研奖励、人才培育以及项目招商等,2019年各地通过政策将实质性的人、财、物资源注入,推动着各地产业集聚加速。

2019年针对第三代半导体的产业投资金额逐年提升,根据CASA统计,2019年投资金额共计265.8亿元,整体相比2018年投资金额上升54.53%,其中SiC项目金额220.8亿元,占比83.07%,GaN项目金额45亿元。

SiC/GaN:稳定爬升的光明期

虽然学术界和产业界很早认识到SiC和GaN相对于传统Si材料的优点,但是由于制造设备、制造工艺与成本的劣势,多年来只是在小范围内得到应用,无法挑战Si基器件的统治地位,但是随着5G、汽车等新市场出现,SiC/GaN不可替代的优势使得相关产品的研发与应用加速;随着制备技术的进步,SiC与GaN器件与模块在成本上已经可以纳入备选方案内,需求拉动叠加成本降低,SiC/GaN的时代即将迎来。

SiC:极限功率器件的理想材料

SiC:极限功率器件的理想的材料

SiC是由硅和碳组成的化合物半导体材料,在热、化学、机械方面都非常稳定。C原子和Si原子不同的结合方式使SiC拥有多种晶格结构,如4H、6H、3C等等。4H-SiC因为其较高的载流子迁移率,能够提供较高的电流密度,常被用来做功率器件。

SiC从上个世纪70年代开始研发,2001年SiC SBD商用,2010年SiC MOSFET商用,SiC IGBT还在研发当中。随着6英寸SiC单晶衬底和外延晶片的缺陷降低和质量提高,使得SiC器件制备能够在目前现有6英寸Si基功率器件生长线上进行,这将进一步降低SiC材料和器件成本,推进SiC器件和模块的普及。

SiC器件相对于Si器件的优势主要来自三个方面:降低电能转换过程中的能量损耗、更容易实现小型化、更耐高温高压。

降低能量损耗

SiC材料开关损耗极低,全SiC功率模块的开关损耗大大低于同等IGBT模块的开关损耗,而且开关频率越高,与IGBT模块之间的损耗差越大,这就意味着对于IGBT模块不擅长的高速开关工作,全SiC功率模块不仅可以大幅降低损耗还可以实现高速开关。

低阻值使得更易实现小型化

SiC材料具备更低的通态电阻,阻值相同的情况下可以缩小芯片的面积,SiC功率模块的尺寸可达到仅为Si的1/10左右。

更耐高温

SiC的禁带宽度3.23ev,相应的本征温度可高达800摄氏度,承受的温度相对Si更高;SiC材料拥有3.7W/cm/K的热导率,而硅材料的热导率仅有1.5W/cm/K,更高的热导率可以带来功率密度的显著提升,同时散热系统的设计更简单,或者直接采用自然冷却。

SiC产业链:欧美占据关键位置

SiC生产过程分为SiC单晶生长、外延层生长及器件制造三大步骤,对应的是产业链衬底、外延、器件与模组三大环节。

SiC衬底: SiC晶体通常用Lely法制造,国际主流产品正从4英寸向6英寸过渡,且已经开发出8英寸导电型衬底产品,国内衬底以4英寸为主。由于现有的6英寸的硅晶圆产线可以升级改造用于生产SiC器件,所以6英寸SiC衬底的高市占率将维持较长时间。

SiC外延: 通常用化学气相沉积(CVD)方法制造,根据不同的掺杂类型,分为n型、p型外延片。国内瀚天天成、东莞天域已能提供4寸/6寸SiC外延片。

SiC器件: 国际上600~1700V SiC SBD、MOSFET已经实现产业化,主流产品耐压水平在1200V以下,封装形式以TO封装为主。价格方面,国际上的SiC产品价格是对应Si产品的5~6倍,正以每年10%的速度下降,随着上游材料器件纷纷扩产上线,未来2~3年后市场供应加大,价格将进一步下降,预计价格达到对应Si产品2~3倍时,由系统成本减少和性能提升带来的优势将推动SiC逐步占领Si器件的市场空间。

全球SiC产业格局呈现美国、欧洲、日本三足鼎立态势。其中美国全球独大,全球SiC产量的70%~80%来自美国公司,典型公司是Cree、Ⅱ-Ⅵ;欧洲拥有完整的SiC衬底、外延、器件以及应用产业链,典型公司是英飞凌、意法半导体等;日本是设备和模块开发方面的领先者,典型公司是罗姆半导体、三菱电机、富士电机等。

国内企业在SiC方面也多有布局。SiC衬底方面,天科合达、山东天岳、同光晶体等均能供应3英寸~6英寸的单晶衬底。SiC外延片方面,厦门瀚天天成与东莞天域生产3英寸~6英寸SiC外延片。SiC器件IDM方面,中电科55所是国内少数从4-6寸碳化硅外延生长、芯片设计与制造、模块封装领域实现全产业链的企业单位,其6英寸碳化硅中试线已投入运行,旗下的控股子公司扬州国扬电子为“宽禁带电力电子器件国家重点实验室”的重要实体单位,专业从事以碳化硅为代表的新型半导体功率模块的研制和批产,现有一条于2017年投产、产能50万只/年的模块工艺线。

泰科天润已经量产SiC SBD,产品涵盖600V/5A~50A、1200V/5A~50A和1700V/10A系列。深圳基本半导体拥有独创的3D SiC技术,推出的1200V SiC MOSFET性能达到业界领先水平。SiC器件Fabless方面,上海瞻芯电子于2018年5月成功地在一条成熟量产的6英寸工艺生产线上完成SiC MOSFET的制造流程。代工方面,三安光电旗下的三安集成于2018年12月公布商业版本的6英寸碳SiC晶圆制造流程,并将其加入到代工组合当中。根据公司新闻稿,目前三安SiC工艺技术可以为650V、1200V和更高额定电压的肖特基势垒二极管(SBD)提供器件结构,公司预计在不久后会推出针对900V、1200V和更高额定电压的SiC MOSFETs产品。

SiC市场:汽车是最大驱动力

SiC器件正在广泛地被应用在电力电子领域中,典型市场包括轨交、功率因数校正电源(PFC)、风电(wind)、光伏(PV)、新能源汽车(EV/HEV)、充电桩、不间断电源(UPS)等。根据Yole的预测,2017~2023年,SiC功率器件市场将以每年31%的复合增长率增长,2023年将超过15亿美元;而SiC行业龙头Cree则更为乐观,其预计短期到2022年,SiC在电动车用市场空间将快速成长到24亿美元,是2017年车用SiC整体收入(700万美元)的342倍。

制造良率提升有利于降低AMOLED屏幕生产成本

随着AMOLED生产良率提升,AMOLED显示面板成本有望下降。中国国内主流AMOLED面板厂商制造良率已越过60%的盈亏平衡点。中国显示面板龙头企业京东方成都第6代柔性AMOLED生产线良率超85%,维信诺AMOLED生产良率亦超70%。随着中国厂商AMOLED生产良率提升,AMOLED面板成本将有效下降,厂商毛利有望逐步改善,行业发展向好。主流厂商生产良率进入65%-90%区间,成本趋近LCD生产成本区间,有望迎来订单与出货量上升,带来良性循环。

SiC是制作高温、高频、大功率、高压器件的理想材料之一,技术也已经趋于成熟,令其成为实现新能源汽车最佳性能的理想选择。与传统解决方案相比,基于SiC的解决方案使系统效率更高、重量更轻及结构更加紧凑。目前SiC器件在EV/HEV上应用主要是功率控制单元、逆变器、DC-DC转换器、车载充电器等方面。

新能源车的功率控制单元(PCU)。 PCU是汽车电驱系统的中枢神经,管理电池中的电能与电机之间的流向、传递速度。传统PCU使用硅基材料半导体制成,强电流与高压电穿过硅制晶体管和二极管的时的电能损耗是混合动力车最主要的电能损耗来源。而使用SiC则大大降低了这一过程中能量损失,将传统PCU配备的Si二极管置换成SiC二极管,Si IGBT置换成SiC MOSFET,就可以降低10%的总能量损耗,同时也可以大幅降低器件尺寸,使得车辆更为紧凑。丰田中央研发实验室(CRDL)和电装公司从1980年代就开始合作开发SiC半导体材料,2014年双方正式发布了基于SiC半导体器件的新能源汽车PCU,是这一领域的典型代表。

车用逆变器。 SiC用在车用逆变器上,能够大幅度降低逆变器尺寸及重量,做到轻量化与节能。在相同功率等级下,全SiC模块的封装尺寸显著小于Si模块,同时也可以使开关损耗降低75%(芯片温度为150°C);在相同封装下,全SiC模块具备更高电流输出能力,支持逆变器达到更高功率。特斯拉Model 3采用了意法半导体(后来增加了英飞凌)生产的SiC逆变器,是第一家在主逆变器中集成全SiC功率模块的车企。2017年12月2日,ROHM为VENTURI车队在电动汽车全球顶级赛事“FIA Formula E”锦标赛第四赛季中提供了采用全SiC功率模块制造的逆变器,使得相对于第二赛季的逆变器尺寸下降43%,重量轻了6kg。

车载充电器。 SiC功率器件正在加速其在车载充电器领域的应用趋势,在今年的功率器件展PCIM Europe 2018(2018年6月5~7日在德国纽伦堡举行)上,多家厂商推出了面向HEV/EV等电动汽车充电器的SiC功率器件产品。据Yole统计,截至2018年有超过20家汽车厂商在自家车载充电器中采用SiC SBD或SiC MOSFET器件,且这一市场在2023年之前保持44%的增长。

重要SiC企业梳理

天科合达

公司概况:SIC 晶片领军企业,成长速度快

天科合达是国内第三代半导体材料SIC晶片的领军企业: 公司成立于2006年9月12日,2017年4月至2019年8月在全国股转系统挂牌转让,2020年7月拟在科创板市场上市。

公司成长速度极快,2017-2019年公司收入由0.24亿增长至1.55亿元,两年复合增长率154%。

营收构成:SIC 晶片占比约为一半

公司营收由三部分构成:碳化硅晶片占比48.12%,宝石等其他碳化硅产品占比36.65%,碳化硅单晶生长炉占比15.23%。

设备自制:从设备到 SIC 片一体化布局

公司以高纯硅粉和高纯碳粉作为原材料,采用物理气相传输法(PVT)生长碳化硅晶体,加工制成碳化硅晶片;其中的碳化硅晶体的生长设备-碳化硅单晶生长炉公司也能完成自制并对外销售。

管理层

(1)刘伟先生 ,出生于1967年3月,中国国籍,无境外永久居留权,正高级工程师,毕业于西安交通大学电气工程专业,硕士研究生。1990年7月至2001年3月,历任石河子热电厂生产技术科专工、锅炉分厂主任、检修分厂副主任、热力分公司经理、生产技术科科长、副厂长、厂长;2001年3月至2008年12月,任天富热电副总经理兼热电厂厂长、东热电厂厂长、南热电厂书记和厂长;2008年12月至2019年6月,历任天富集团党委委员兼天富热电党委副书记和南热电厂厂长、董事长,天富集团党委副书记、党委书记、董事长兼天富热电(天富能源)党委书记、副董事长;2019年6月至今,任天富集团党委书记、董事长、天富能源党委书记、董事长。2015年3月至2015年10月,任天科合达有限董事长;2015年10月至今,任公司董事长。

(2)杨建先生 ,出生于1976年9月,中国国籍,无境外永久居留权,毕业于中国科学院大学项目管理专业,硕士研究生。1999年7月至2001年12月,任新疆众和股份有限公司财务部会计;2002年1月至2006年12月,任北京天富科技有限公司财务部经理;2007年1月至2011年9月,任天科合达有限财务总监;2012年1月至2013年8月,任掌金科技(北京)有限公司副总经理。2013年9月至2015年10月,历任天科合达有限副总经理、董事兼总经理;2015年10月至今,任公司董事、总经理。

公司毛利率

公司产品毛利率随着规模增大而显著增加,从2017年度的-12%增长到2020年Q1的29.45%。

公司产能与产量

公司2019年SIC产能37525片,产量36879片,产能利用率超过98%,过去两年产能利用率也都维持高位。

公司销量与单价

天科合达SIC片的销售均价2017/2018/2019/2020Q1分别为2002.95元/2420.57元/2286.75元/3042.96元,均价呈现稳中有升的态势。

行业格局与公司地位

公司地位:2018年,以导电型的SIC来看, 天科合达以1.7%的市场占有率排名全球第六,排名国内导电型碳化硅晶片第一。

公司前五大客户

公司前五大客户,大多是国内SIC产业链公司,包括三安集成、中电化合物、东莞天域等。

研发投入与技术水平

公司研发投入: 2018年研发投入:1262万;2019年研发投入:2919万;2020年1-3月:568万;公司技术研发人员共75人,占公司员工总数的13.7%,其中核心技术人员5名;公司拥有已获授权的专利34项,其中已获授权发明专利33项(含6项国际发明专利);公司先后荣获“十一五”国家科技计划执行优秀团队奖、新疆生产建设兵团科学技术进步奖一等奖等重要奖项;

公司产品和研发的阶段:阶段一: 06-07年:2寸导电型、半绝缘型研发成功;08-11年:3英寸导电型、半绝缘型产品研发成功并少量销售; 阶段二: 12-16年:4英寸导电/半绝缘型研发成功并少量销售; 阶段三: 2017年:4英寸导电型规模化量产;2018年:6英寸半绝缘型研发成功;2019:4英寸半绝缘型产品规模量产;2020年:8英寸的产品开始启动研发。

未来发展规划和募投产能:

募投项目: 公司在现有产能的基础上,拟对主营业务碳化硅衬底材料进行扩产。内容包括主要建设一个包括晶体生长、晶片加工和清洗检测等全生产环节的生产基地。

项目目标: 项目投产后年产12万片6英寸碳化硅晶片,其中6英寸导电型碳化硅晶片约为8.2万片,6英寸半绝缘型碳化硅晶片约为3.8万片。

项目投资: 本项目总投资金额95,706.00万元,其中固定资产投资88,438.00万元,流动资金7,268.00万元。项目建设期2年。

山东天岳

1、半绝缘SIC片的领军企业: 公司成立于2010年,专注于碳化硅晶体衬底材料的生产;公司产品主要在半绝缘型的SIC片。公司投资建成了第三代半导体材料产业化基地,具备研发、生产国际先进水平的半导体衬底材料的软硬件条件,是我国第三代半导体衬底材料行业的先进企业。

2、成长能力: 据了解,公司收入从2018年收入1.1亿左右增加至2019年超过2.5亿总收入(其中也有约一半是SIC衍生产品宝石等),同比增长100%以上。公司的SIC片主要集中在半绝缘型,而天科合达主要集中在导电型。

3、华为入股: 华为旗下的哈勃科技投资持股山东天岳8.17%。

4、生产能力(公司采用的是长晶炉的数量进行表征): 山东天岳的产能主要由长晶炉的数量决定, 2019年产线上长晶炉接近250台,销售衬底约2.5万片,预计年底前再购置一批长晶炉,目标增加至550台以上;

5、销售价格: 2018、2019年公司衬底平均销售价格大数大约在6300元/片、8900元/片,预计今年的平均价格将会突破9000元, 价格变动的主要原因是2,3寸小尺寸衬底、N型等相对低价的衬底销售占比逐步降低,高值的4寸高纯半绝缘产品占比逐步提升导致单位售价提高 。

6、技术实力: 山东天岳的碳化硅技术起源于 山东大学晶体国家重点实验室 ,公司于2011年购买了该实验室蒋明华院士专利,并投入了大量研发,历经多年工艺积累,将碳化硅衬底从实验室的技术发展成为了产业化技术;山东天岳除30人的研发团队外,还在海外设有6个联合研发中心;公司拥有专利近300项,其中先进发明专利约50多项,先进实用性专利约220项,申请中的发明专利约50多项。

斯达半导

1、斯达半导97.5%的收入均是IGBT ,是功率半导体已上市公司中最纯正的IGBT标的, 2019收入7.8亿(yoy+15.4%),归母净利润1.35(yoy+39.8%),IGBT模块全球市占率2%,排名全球第八;

2、斯达半导在积极进行第三代半导体SIC的布局。 公司SiC相关的产品和技术储备在紧锣密鼓的进行:

3、公司在未来重点攻关技术研发与开发计划:

主要提到三项重要产品开发:1、全系列FS-Trench型IGBT芯片的研发;2、新一代IGBT芯片的研发; 3、SiC、GaN等前沿功率半导体产品的研发、设计及规模化生产: 公司将坚持科技创新,不断完善功率半导体产业布局,在大力推广常规IGBT模块的同时,依靠自身的专业技术,积极布局宽禁带半导体模块(SiC模块、GaN模块),不断丰富自身产品种类,加强自身竞争力,进一步巩固自身行业地位。

4、公司和宇通客车等客户合作研发SIC车用模块

2020年6月5日,客车行业规模领先的宇通客车宣布, 其新能源技术团队正在采用斯达半导体和CREE合作开发的1200V SiC功率模块,开发业界领先的高效率电机控制系统,各方共同推进SiC逆变器在新能源大巴领域的商业化应用。

宇通方面表示,“斯达和CREE在SiC方面的努力和创新,与宇通电机控制器高端化的产品发展路线不谋而合,同时也践行了宇通“为美好出行”的发展理念,相信三方在SiC方面的合作一定会硕果累累。”

我们在之前发布的斯达半导深度报告中测算斯达在不同SIC渗透率和不同SIC市占率情境下2025年收入弹性,中性预计2025年斯达在国内的SIC器件市占率为6-8%。 预计2023-2024年国内SIC产业链如山东天岳、三安光电等更加成熟后,SIC将迎来替代IGBT拐点,但是IGBT和SIC MOS等也将长期共存,相信国内的技术领先优质的IGBT龙头斯达半导能够不断储备相关技术和产品,积极拥抱迎接这一行业创新。

露笑科技

1、传统主业是 电磁线产品 :公司是专业的节能电机、电磁线、涡轮增压器、蓝宝长晶片研发、生产、销售于一体的企业,公司主要产品有各类铜、铝芯电磁线、超微细电磁线、小家电节能电机、无刷电机、数控电机、涡轮增压器和蓝宝石长晶设备等产品。 公司是国内主要电磁线产品供应商之一,也是国内最大的铝芯电磁线和超微细电磁线产品生产基地之一。

2、SIC长晶设备已经开始对外供货: 露笑科技基于蓝宝石技术储备,经过多年研发已快速突破碳化硅工艺壁垒,在蓝宝石基础上布局碳化硅长晶炉和晶片生产。碳化硅跟蓝宝石从设备、工艺到衬底加工有较强的共同性和技术基础,例如精确的温场控制、精确的压力控制、精确的籽晶晶向生长以及基片加工等壁垒。 公司在多年蓝宝石生产技术支持下成功研发出碳化硅自主可控长晶设备,并在2019年开始对外供货SIC长晶设备。

3、公司布局SIC的人才优势: 公司引进具有二十多年碳化硅行业从业经验的技术团队,开展碳化硅衬底及外延技术研究,加码布局碳化硅产业。2020年4月,公司发布非公开募集资金公告,拟募集资金总额不超过10亿元,用于新建碳化硅衬底片产业化项目、碳化硅研发中心项目和偿还银行贷款。随着公司碳化硅产品研发并量产,公司有望取得一定的市场份额。

4、与合肥合作打造第三代半导体SIC产业园: 2020年8月8日与合肥市长丰县人民政府在合肥市政府签署《合肥市长丰县与露笑科技股份有限公司共同投资建设第三代功率半导体(碳化硅)产业园的战略合作框架协议》。包括但不限于碳化硅等第三代半导体的研发及产业化项目,包括碳化硅晶体生长、衬底制作、外延生长等的研发生产,项目投资总规模预计100亿元。

其他未上市的SIC产业链相关厂商比亚迪半导体、中车时代半导体、泰科天润等优质功率半导体公司。

GaN:5G应用的关键材料

GaN:承上启下的宽禁带半导体材料

GaN材料与Si/SiC相比有独特优势。GaN与SiC同属于第三代宽禁带半导体材料,相较于已经发展十多年的SiC,GaN功率器件是后进者,它拥有类似SiC性能优势的宽禁带材料,但拥有更大的成本控制潜力。与传统Si材料相比,基于GaN材料制备的功率器件拥有更高的功率密度输出,以及更高的能量转换效率,并可以使系统小型化、轻量化,有效降低电力电子装置的体积和重量,从而极大降低系统制作及生产成本。

GaN是极稳定的化合物,又是坚硬的高熔点材料,熔点约为1700℃,GaN具有高的电离度,在Ⅲ—Ⅴ族化合物中是最高的(0.5或0.43)。在大气压力下,GaN晶体一般是六方纤锌矿结构。

GaN器件逐步步入成熟阶段。 基于GaN的LED自上世纪90年代开始大放异彩,目前已是LED的主流,自20世纪初以来,GaN功率器件已经逐步商业化。2010年,第一个GaN功率器件由IR投入市场,2014年以后,600V GaN HEMT已经成为GaN器件主流。2014年,行业首次在8英寸SiC上生长GaN器件。

随着成本降低,GaN市场空间持续放大。 GaN与SiC、Si材料各有其优势领域,但是也有重叠的地方。GaN材料电子饱和漂移速率最高,适合高频率应用场景,但是在高压高功率场景不如SiC;随着成本的下降,GaN有望在中低功率领域替代二极管、IGBT、MOSFET等硅基功率器件。以电压来分,0~300V是Si材料占据优势,600V以上是SiC占据优势,300V~600V之间则是GaN材料的优势领域。根据Yole估计,在0~900V的低压市场,GaN都有较大的应用潜力,这一块占据整个功率市场约68%的比重,按照整体市场154亿美元来看,GaN潜在市场超过100亿美元。

GaN RF市场即将大放异彩。 根据Yole估计,大多数低于6GHz的宏网络单元实施将使用GaN器件,到2023年,GaN RF器件市场规模达到13亿美元。

GaN在电力电子领域与微波射频领域均有优势

GaN在电力电子领域主要优势在于高效率、低损耗与高频率。GaN材料的这一特性使得其在消费电子充电器、新能源充电桩、数据中心等领域具有很大的应用前景。

高转换效率:GaN的禁带宽度是Si的3倍,击穿电场是Si的10倍。因此,同样额定电压的GaN开关功率器件的导通电阻比Si器件低3个数量级,大大降低了开关的导通损耗。

低导通损耗:GaN的禁带宽度是Si的3倍,击穿电场是Si的10倍。因此,同样额定电压的GaN开关功率器件的导通电阻比Si器件低3个数量级,大大降低了开关的导通损耗。

高工作频率:GaN开关器件寄生电容小,工作效率可以比Si器件提升至少20倍,大大减小了电路中储能原件如电容、电感的体积,从而成倍地减少设备体积,减少铜等贵重原材料的消耗。

GaN在微波射频领域主要优势在于高效率、大带宽与高功率。为射频元件材料,GaN在电信基础设施和国防军工方面应用已经逐步铺展开来。

更高效率: 降低功耗,节省电能,降低散热成本,降低总运行成本。

更大的带宽: 提高信息携带量,用更少的器件实现多频率覆盖,降低客户产品成本。也适用于扩频通信、电子对抗等领域。

更高的功率: 在4GHz以上频段,可以输出比GaAs高得多的频率,特别适合雷达、卫星通信、中继通信等领域。

GaN产业链:海外企业为主,国内企业逐步涉足

GaN与SiC产业链类似,GaN器件产业链各环节依次为:GaN单晶衬底(或SiC、蓝宝石、Si)→GaN材料外延→器件设计→器件制造。目前产业以IDM企业为主,但是设计与制造环节已经开始出现分工,如传统硅晶圆代工厂台积电开始提供GaN制程代工服务,国内的三安集成也有成熟的GaN制程代工服务。各环节相关企业来看,基本以欧美企业为主,中国企业已经有所涉足。

GaN衬底: 主流产品以2~3英寸为主,4英寸也已经实现商用。GaN衬底主要由日本公司主导,日本住友电工的市场份额达到90%以上。我国目前已实现产业化的企业包括苏州纳米所的苏州纳维科技公司和北京大学的东莞市中镓半导体科技公司。

GaN外延片: 根据衬底的不同主要分为GaN-on-Si、GaN-on-SiC、GaN-on-sapphire、GaN-on-GaN四种。GaN-on-Si:目前行业生产良率较低,但是在降低成本方面有着可观的潜力:因为Si是最成熟、无缺陷、成本最低的衬底材料;同时Si可以扩展到8寸晶圆厂,降低单位生产成本,使其晶圆成本与SiC基相比只有其百分之一;Si的生长速度是于SiC晶体材料的200至300倍,还有相应的晶圆厂设备折旧以及能耗成本上的差别等。GaN-on-Si外延片主要用于制造电力电子器件,其技术趋势是优化大尺寸外延技术。GaN-on-SiC:结合了SiC优异的导热性和的GaN高功率密度和低损耗的能力,是RF的合适材料。受限于SiC的衬底,目前尺寸仍然限制在4寸与6寸,8寸还没有推广。GaN-on-SiC外延片主要用于制造微波射频器件。GaN-on-sapphire:主要应用在LED市场,主流尺寸为4英寸,蓝宝石衬底GaN LED芯片市场占有率达到90%以上。GaN-on-GaN:采用同质衬底的GaN主要应用市场是蓝/绿光激光器,应用于激光显示、激光存储、激光照明等领域。

GaN器件设计与制造: GaN器件分为射频器件和电力电子器件,射频器件产品包括PA、LNA、开关器、MMIC等,面向基站卫星、雷达等市场;电力电子器件产品包括SBD、常关型FET、常开型FET、级联(Cascode)FET等产品,面向无线充电、电源开关、包络跟踪、逆变器、变流器等市场。按工艺分,则分为HEMT、HBT射频工艺和SBD、Power FET电力电子器件工艺两大类。

GaN市场:射频是主战场,5G是重要机遇

GaN是射频器件的合适材料。目前射频市场主要有三种工艺: GaAs工艺,基于Si的LDMOS(横向扩散金属氧化物半导体)工艺,以及GaN工艺。GaAs器件的缺点是器件功率较低,低于50W。LDMOS器件的缺点是工作频率存在极限,最高有效频率在3GHz以下。GaN弥补了GaAs和Si基LDMOS两种老式技术之间的缺陷,在体现GaAs高频性能的同时,结合了Si基LDMOS的功率处理能力。

在射频PA市场,LDMOS PA带宽会随着频率的增加而大幅减少,仅在不超过约3.5GHz的频率范围内有效,采用0.25微米工艺的GaN器件频率可以高达其4倍,带宽可增加20%,功率密度可达6~8 W/mm(LDMOS为1~2W/mm),且无故障工作时间可达100万小时,更耐用,综合性能优势明显。

在更高的频段(以及低功率范围),GaAs PA是目前市场主流,出货占比占9成以上。GaAs RF器件相比,GaN优势主要在于带隙宽度与热导率。带隙宽度方面,GaN的带隙电压高于GaAs(3.4 eV VS1.42 eV),GaN器件具有更高的击穿电压,能满足更高的功率需求。热导率方面,GaN-on-SiC的热导率远高于GaAs,这意味着器件中的功耗可以更容易地转移到周围环境中,散热性更好。

GaN是5G应用的关键技术。 5G将带来半导体材料革命性的变化,随着通讯频段向高频迁移,基站和通信设备需要支持高频性能的射频器件,GaN的优势将逐步凸显,这正是前一节讨论的地方。正是这一优势,使得GaN成为5G的关键技术。

在Massive MIMO应用中, 基站收发信机上使用大数量(如32/64等)的阵列天线来实现了更大的无线数据流量和连接可靠性,这种架构需要相应的射频收发单元阵列配套,因此射频器件的数量将大为增加,使得器件的尺寸大小很关键,利用GaN的尺寸小、效率高和功率密度大的特点可实现高集化的解决方案,如模块化射频前端器件。除了基站射频收发单元陈列中所需的射频器件数量大为增加,基站密度和基站数量也会大为增加,因此相比3G、4G时代,5G时代的射频器件将会以几十倍、甚至上百倍的数量增加。在5G毫米波应用上,GaN的高功率密度特性在实现相同覆盖条件及用户追踪功能下,可有效减少收发通道数及整体方案的尺寸。

GaN在电力电子器件领域多用于电源设备。 由于结构中包含可以实现高速性能的异质结二维电子气,GaN器件相比于SiC器件拥有更高的工作频率,加之可承受电压要低于SiC器件,所以GaN电力电子器件更适合高频率、小体积、成本敏感、功率要求低的电源领域,如轻量化的消费电子电源适配器、无人机用超轻电源、无线充电设备等。

GaN电力电子器件增速最快的是快充市场。2018年,世界第一家GaN IC厂商Navitas和Exagan推出了带有集成GaN解决方案(GaNFast™)的45W快速充电电源适配器,此45W充电器与Apple USB-C充电器相比,两者功率相差不大,但是体积上完全是不同的级别,内置GaN充电器比苹果充电器体积减少40%。目前来看,采用GaN材料的快速充电器已成星火燎原之势,有望成为行业主流。
     责任编辑:tzh

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分