This lab presents the steps to setup an environment for using the EVAL-ADMP441Z evaluation board together with the BeMicro SDK USB stick and the Nios II Embedded Development Suite (EDS). Below is presented a picture of the EVAL-ADMP441Z Evaluation Board with the BeMicro SDK Platform.
For component evaluation and performance purposes, as opposed to quick prototyping, the user is directed to use the part evaluation setup. This consists of:
The SDP-B controller board is part of Analog Devices System Demonstration Platform (SDP). It provides a high speed USB 2.0 connection from the PC to the component evaluation board. The PC runs the evaluation software. Each evaluation board, which is an SDP compatible daughter board, includes the necessary installation file required for performance testing.
Note: it is expected that the analog performance on the two platforms may differ.
Below is presented a picture of SDP-B Controller Board with the EVAL-ADMP441Z Evaluation Board.
The EVAL-ADMP441Z evaluation board is a member of a growing number of boards available for the SDP. It was designed to help customers evaluate performance or quickly prototype new ADMP441 circuits and reduce design time. When using this evaluation board with the SDP board or BeMicro SDK board, provide a 5 V to 6 V supply to J4.
The ADMP441 is a high performance, low power, digital output, omnidirectional MEMS microphone with a bottom port. The complete ADMP441 solution consists of a MEMS sensor, signal conditioning, an analog-to-digital converter, antialiasing filters, power management, and an industry standard 24-bit I2S inter-face. The I2S interface allows the ADMP441 to connect directly to digital processors, such as DSPs and microcontrollers, with-out the need for an audio codec in the system.
The ADMP441 has a high SNR and high sensitivity, making it an excellent choice for far field applications. The ADMP441 has a flat wideband frequency response, resulting in natural sound with high intelligibility.
The first objective is to ensure that you have all of the items needed and to install the software tools so that you are ready to create and run the evaluation project.
Below is presented the list of required hardware items:
Below is presented the list of required software tools:
The Quartus II design software and the Nios II EDS is available via the Altera Complete Design Suite DVD or by downloading from the web.
Create a folder called “ADIEvalBoardLab” on your PC and extract the admp441_evalboardlab.zip archive to this folder. Make sure that there are NO SPACES in the directory path. After extracting the archive the following folders should be present in the ADIEvalBoardLab folder: FPGA, Software, UserInterface, NiosCpu.
After the Quartus II and Nios II software packages are installed, you can plug the BeMicro SDK board into your USB port. Your Windows PC will find the new hardware and try to install the driver.
Since Windows cannot locate the driver for the device the automatic installation will fail and the driver has to be installed manually. In the Device Manager right click on the USB-Blaster device and select Update Driver Software.
In the next dialog box select the option Browse my computer for driver software. A new dialog will open where it is possible to point to the driver’s location. Set the location to altera/
If Windows presents you with a message that the drivers have not passed Windows Logo testing, please click “Install this driver software anyway”. Upon installation completion a message will be displayed to inform that the installation is finished.
The next sections of this lab present all the steps needed to create a fully functional project that can be used for evaluating the operation of the ADI platform. It is possible to skip these steps and load into the FPGA an image that contains a fully functional system that can be used together with the uC-Probe interface for the ADI platform evalution. The first step of the quick evaluation process is to program the FPGA with the image provided in the lab files. Before the image can be loaded the Quartus II Web Edition tool or the Quartus II Programmer must be installed on your computer. To load the FPGA image run the program_fpga.bat batch file located in the ADIEvalBoardLab/FPGA folder. After the image was loaded the system must be reset. Now the FPGA contains a fully functional system and it is possible to skip directly to the DEMONSTRATION PROJECT USER INTERFACE section of this lab.
The lab is delivered together with a set of design files that are used to evaluate the ADI part. The FPGA image that must be loaded into the BeMicroSDK FPGA is included in the design files. This section presents the components included in the FPGA image and also the procedure to load the image into the FPGA.
The following components are implemented in the FPGA design:
Name | Address | IRQ |
---|---|---|
CPU | 800 | - |
Main PLL | 80 | - |
JTAG UART | 90 | 0 |
uC-Probe UART | A0 | 1 |
EPCS FLASH CONTROLLER | 1800 | 2 |
OnChip RAM | 10000 | - |
LED GPIO | 100 | - |
SPI_0_P0 | 2000 | 4 |
SPI_1_P0 | 2040 | 6 |
GPIO | 2080 | - |
CTRL GPIO | 20A0 | - |
SPI_0_P1 | 0 | 5 |
SPI_1_P1 | 20 | 7 |
SYS ID | 40 | - |
TIMER | 60 | 3 |
I2C_0 | C0 | 8 |
I2C_1 | E0 | 9 |
To load the FPGA image the following steps must be performed:
After finishing, the image is permanently loaded to the configuration Flash and the system will start with a blinking LED after reset or power up.
This section presents the steps for developing a software application that will run on the BeMicroSDK system and will be used for controlling and monitoring the operation of the ADI evaluation board.
Launch the Nios II SBT from the Start → All Programs → Altera → Nios II EDS 11.0 → Nios II 11.0 Software Build Tools for Eclipse (SBT).
NOTE: Windows 7 users will need to right-click and select Run as administrator. Another method is to right-click and select Properties and click on the Compatibility tab and select the Run This Program As An Administrator checkbox, which will make this a permanent change.
The tool will create two new software project directories. Each Nios II application has 2 project directories in the Eclipse workspace.
Since you chose the blank project template, there are no source files in the application project directory at this time. The BSP contains a directory of software drivers as well as a system.h header file, system initialization source code and other software infrastructure.
The software project provided in this lab does not make use of an operating system. All stdout, stdin and stderr messages will be directed to the jtag_uart.
In addition to the board support package settings configured using the BSP Editor, there are other compilation settings managed by the Eclipse environment such as compiler flags and optimization level.
In Windows Explorer locate the project directory which contains a directory called Software. In Windows Explorer select all the files and directories from the Software folder and drag and drop them into the Eclipse software project ADIEvalBoard.
Just as you configured the optimization level for the BSP project, you should set the optimization level for the application software project ADIEvalBoard as well.
Application code can be conveniently organized in a directory structure. This section shows how to define these paths in the makefile.
These 2 steps will compile and build the associated board support package, then the actual application software project itself. The result of the compilation process will be an Executable and Linked Format (.elf) file for the application, the ADIEvalBoard.elf file.
The BeMicroSDK hardware is designed with a System ID peripheral. This peripheral is assigned a unique value based on when the hardware design was last modified in the SOPC Builder tool. SOPC Builder also places this information in the .sopcinfo hardware description file. The BSP is built based on the information in the .sopcinfo file.
To run the software project on the Nios II processor:
This will re-build the software project to create an up–to-date executable and then download the code into memory on the BeMicroSDK hardware. The debugger resets the Nios II processor, and it executes the downloaded code. Note that the code is verified in memory before it is executed.
The code size and start address might be different than the ones displayed in the above screenshot.
The demonstration project records audio files of 20 seconds length from the two EVAL-ADMP441Z-FLEX boards connected to the EVAL-ADMP441Z board. The audio is recorded at a sample rate of 8 kHz.
To start a recording process, run the ADIEvalBoard/UserInterface/record.bat script. A DOS command prompt window will be opened. This window will be closed after the recording process will be done.
The data recorded is saved into the record.wav file, located in the same folder as the record.bat file.
The process can be repeated as many times as needed, but the record.wav file will be overwritten.
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
全部0条评论
快来发表一下你的评论吧 !