电源/新能源
太阳能光伏阵列似乎每天都变得更便宜、更高效,这使得它们在可再生和/或远程供电应用中越来越实用。尽管如此,任何给定阵列产生的电压随负载、入射光强度和温度而显着变化,因此通常需要某种形式的调节。
阵列性能可以显着受益于最大功率点跟踪 (MPPT) 和开关模式调节,如早期设计理念所示:太阳能阵列控制器不需要乘法器来最大化功率
但对于小型阵列,MPPT 和开关模式电路的额外复杂性似乎不合理,因此线性调节成为更简单和更好的选择。本设计理念针对此类系统,重点关注串联稳压器拓扑与并联稳压器拓扑的相对优势。
让我们从一个假设的小型太阳能电池阵列开始,该阵列针对 12W 输出(在完全阳光直射下 ~1kW/m 2)、1A 和 12V、20% 的光电转换效率进行了优化,因此标称面积为 ~0.06m 2 = ~ 100 英寸2 . 然后添加线性调节电路,以在负载电流从 0 到 1A 变化时保持恒定的 12V 输出。
图 1说明了一个合适的串联稳压器,而图 2是一个类似的并联拓扑。为便于比较并联稳压与串联稳压的优势,两种稳压器均采用基于古老的 LM10 组合基准 + 运算放大器的相同检测/控制电路。
图 1适用于小型太阳能电池阵列的串联线性稳压器。
图 2适用于小型太阳能电池阵列的并联线性稳压器。
如图所示,LM10 200mV 内部基准(引脚 1 + 8)通过提供输入偏置电流补偿的 R1 = R2R3/(R2 + R3) 驱动运算放大器反相输入(引脚 2),而同相输入(引脚3) 通过 60:1 R2:R3 分压器连接到 Vout (Vsetpoint = 200mV(R3/R2 + 1))。因此,运算放大器输出(引脚 6)将在
Vout < Vsetpoint 并且当 Vout > Vsetpoint 时为正。
在图 1(串联稳压器)中,引脚 6 通过限流 R4 连接到 D45 PNP 传输功率晶体管的基极,当 Vout < Vsetpoint 时增加驱动和负载电流,当 Vout > Vsetpoint 时减小它们。在图 2(并联稳压器)中,引脚 6 驱动 D44 NPN 并联晶体管的基极,当 Vout > Vsetpoint 时将更多的阵列电流路由到地,而在 Vout > Vsetpoint 时则更少。
那么,哪种类型的调节(并联或串联)更好,何时以及为什么?
为了回答这个一般性问题,将考虑三类特定的电路性能:
调节器效率
当 D45 传输晶体管导通并接近饱和时,串联拓扑的满载 (1A) 效率受三个因素的限制:
将这些损失相加,估计典型效率因子为 98%。
相比之下,在分流拓扑中,D44 功率晶体管在满载时完全关闭,阵列和输出之间的连接是直接的,只留下上述三个因素中的一个来竞争输出电流:#1——312uA LM10 电流。这导致近乎完美的 99.97% 效率。
结论:就效率而言,串联非常好,但并联(实际上)是完美的。请注意,该结果与串联稳压效率通常高于并联稳压效率的普遍预期不同。
热管理挑战
D45 系列传输晶体管的最大热耗散约为 1.33W,发生在 0.66A 负载电流时,可由小型夹式散热器容纳。的D44并联晶体管的最大功耗,相比之下,发生在零负载电流和大得多:〜4.5W,需要相当大和笨重的挤压片,以限制可接受的温度上升(〜40 ö和自然对流的条件下C)辐射。
根据这个标准,串联调节是明显的赢家,(酷)因子大于 3。
调节方式对太阳能电池阵列温度的影响
太阳能电池阵列吸收的总太阳能只能通过两种方式: 1. 转换为电能输送到连接的电路;或 2. 阵列散发的热量。热力学第一定律规定后两者之和必须始终完全等于前者。因此,连接的负载接受的电力越少,阵列必须以热量的形式释放的电力就越多,这不可避免地会增加阵列的温度。
串联调节会导致大部分未被负载接受的功率被阵列耗散(记住 D45 保持多冷),而并联调节则耗散 D44 晶体管和 R4 中被拒绝的功率。因此,在部分负荷,有20%的效率分流调节面板运行冷却器比串联调节面板,由多达10 ö C.太阳能阵列转换效率0.3%与温度的上升下降到0.4%/ ø C,使得在某些情况下,并联调节面板的效率可能比串联调节面板高 3% 或 4%。
按照这个标准,分流调节显然是优越的。
总而言之,我们看到了一个混合包:分流调节是否通过在三个 ABC 中击败两个系列赛来赢得设计德比?这取决于。在设计者选择稳压器类型时平衡相互冲突的标准将取决于相互竞争的优先级,因为它们在特定应用的详细要求中自行分类。
全部0条评论
快来发表一下你的评论吧 !