什么是ESD?ESD如何影响PCB?ESD保护电路设计如何实现?

PCB设计

2500人已加入

描述

一、什么是ESD?

ESD代表静电放电。许多材料可以导电并积累电荷。ESD 是由于摩擦带电(材料之间的摩擦)或静电感应而发生的。每当发生这种情况时,物体都会在其表面形成固定电荷(静电)。当这个物体放置得太靠近另一个带电物体或材料时,电压差会导致电流在它们之间流动,直到恢复电荷平衡。 因此,可以将静电放电定义为两种带电材料或物体之间由接触、短路或电介质击穿引起的瞬时电流流动。

 

对于消费类产品,ESD 和空气中的介质击穿通常发生在两点之间的电场大于 40 kV/cm 时。气压、温度和湿度等因素会影响电场强度。例如,某些环境中的高湿度会导致空气更具导电性,这会耗散一些电荷并增加 ESD 所需的电压。

二、ESD如何影响PCB?

静电在生活中比较常见,但是静电荷的电压可以达到几千伏,可以对元件造成很大的危害。

当这个电压差足够大时,就会有电流的传导路径,从而产生巨大的电流脉冲。随着电流脉冲的发展,高热量会在 PCB 本身的元件和导体内消散。在极端场强和产生的电流下,PCB 可能会损坏,组件可能会被毁坏。

这种散热基本上是 IR 压降,其中 PCB 中元件的自然直流电阻会产生压降并达到高温。ESD 可能发生在 PCB 上的一些常见位置,因此 PCB 中的 ESD 保护应重点放在某些特定区域。如下例如:

1、集成电路中的ESD ESD 脉冲会导致电流流过集成电路上的管芯,产生会损坏组件的高热。

下面显示了集成电路封装的示例和半导体芯片上的走线。

半导体芯片

集成电路封装(左)和管芯(右)上的极端 ESD 损坏 尤其是现在很多芯片都是使用光刻特性制造的,不能承受高压降,虽然说可能只是高于工作电压的DC值,也会对芯片造成影响。

2、连接器中的ESD 连接器本身不是ESD源,但是在上面积聚的静电荷都可能导致ESD。有人插入芯片,拔出电缆或者按下按钮都会给设备带来静电风险。由于浮动导体上静电荷传递,浮动引脚可能会产生ESD。最后当连接器插入插座时,可能会产生ESD,从而产生火花。 连接器上的金属护罩和浮动引脚是某些消费和工业产品中发生 ESD 事件的常见位置。

半导体芯片

连接器上的金属护罩和浮动引脚是某些消费和工业产品中发生 ESD 事件的常见位置   处理浮动引脚的简单解决方案是将它们接地。屏蔽连接器还应具有连接到机箱的接地屏蔽层,并最终连接到大地。应该是直接连接到底盘的低阻抗连接,不通过电容提供此连接,也不通过 PCB 将 ESD 电流路由到地。

PCB 设计的几乎每个元素(走线、布线、层、电子元件放置和间距)都会影响电路板上的 PCB ESD 保护。因此必须在设计早期就考虑到ESD保护电路。

三、ESD保护电路设计

1、TVS 二极管和二极管电路

TVS 二极管保护电路是非工业低电压设置中最常见的电路之一。与嵌入在电源管理 IC 或微控制器中的其他 ESD 保护元件相比,TVS 浪涌二极管保护器可以提供更高的电压抑制,如下例所示。 下图为ESD 保护电路示例,该电路由差分 I/O 上的并联 TVS 二极管组成。

半导体芯片

ESD 保护电路示例

  1)典型的电压钳位二极管电路

典型的电压钳位二极管电路如下所示。该电压钳位电路主要是限制缓冲器输入端的电压累积。

在正常情况下,二极管 D1 和 D2 是反向偏置的,只要输入端的电压大于电源轨电压,二极管 D1 就会正向偏置并导通。类似地,当输入电压低于地时,二极管 D2 正向偏置并从地向输入导通。

下图为单端缓冲器 I/O 上的 ESD 保护电路中使用的齐纳二极管。

半导体芯片

单端缓冲器 I/O 上的 ESD 保护电路中使用的齐纳二极管。  

上述电路可以使用一些具有高反向偏置击穿电压的简单二极管(例如齐纳二极管),或者并联或背靠背配置组合的TVS二极管。用于确定使用哪种类型二极管的主要因素是击穿电压和正向电流。

TVS 二极管分为两种类型,两种类型的 TVS 二极管都在正常工作条件下充当开路,并且在发生 ESD 浪涌时充当接地短路。  

2)单向瞬态抑制二极管

用于 ESD 保护的单向 TVS 浪涌二极管如下所示。TVS 二极管不一定是简单的齐纳二极管,也可以是专门作为 TVS 二极管销售的组件,如下图所示。

下图为受保护组件电源轨上的单向 TVS 抑制二极管。

半导体芯片

受保护组件电源轨上的单向 TVS 抑制二极管  

在 ESD的正周期期间,该二极管变为反向偏置并以雪崩模式运行,导致 ESD 电流从输入端流向地。在负周期期间,此 TVS 二极管变为正向偏置并传导 ESD 电流。

单向 TVS 二极管保护电路免受 ESD 影响的方式:通过阻止或允许 ESD 电流流动,具体取决于其极性。  

3)双向瞬态抑制二极管

下图显示了双向 TVS 浪涌二极管保护 ESD 敏感元件的典型用法。这里只是一个简单的布置,如果需要额外的电流限制,可以添加一个额外的电阻。

下图为受保护组件电源轨上的双向 TVS 抑制二极管。

半导体芯片

受保护组件电源轨上的双向 TVS 抑制二极管。  

在瞬态 ESD 的正周期期间,两个二极管中的一个正向偏置,另一个反向偏置,这意味着一个二极管由于其正向偏置而导通,而另一个二极管则以雪崩模式工作。

通过这种方式,两个二极管都形成了一条从 ESD 源通向地的路径。在负 ESD 循环期间,二极管交换它们的模式,再次创建通路并且电路保持受保护。  

2、使用 TISP4350 过压保护器代替 TVS 二极管

这种电路专为电信线路上的过压而设计。与 TVS 二极管阵列相比,TISP4 针对 ESD 事件和其他来源的过压事件提供了某种程度的通用保护。

半导体芯片

使用 TISP4350 过压保护器代替 TVS 二极管   保护装置的选择取决于许多因素。不同的型号和类型针对不同的电压范围、工作电压、事件持续时间、响应时间等而设计。  

3、其他 ESD 抑制器组件

除以上介绍的外,还有其他几种 ESD 抑制器组件,例如多层变阻、气体放电管和基于聚合物的抑制器。ESD 抑制组件用于将 ESD 电压降低到特定限值以下,从而保护电路或组件组。

抑制器组件或电路并联到易受攻击的线路,将低 ESD 电压保持在一定限度内,并将主要的 ESD 电流分流到地。一般来说都可以datasheet上找到相关的电路示例。  

4、具体案例:气体放电管 + TVS 二极管

处理高电压的一种策略是使用与 TVS 二极管和电感并联的气体放电管。电感和 TVS 二极管就像一个低通 RL 电路,提供额外的滤波并减慢 ESD 脉冲的上升时间。

下面这个电路基本上是一个具有大时间常数的低通滤波器,因此该电路将允许标称直流电压通过,同时为通过放电管的 ESD 电流提供高阻抗。

输入端的保险丝提供了针对大 ESD 电压的额外保护。 下图为采用TVS二极管和气体放电管的ESD保护电路设计。

半导体芯片

采用TVS二极管和气体放电管的ESD保护电路设计

四、PCB布局中的ESD保护

1、优化 TVS 周围的阻抗

所有 PCB 元件和走线都有寄生电感。在典型的保护方案中,有四个:ESD 源 和 TVS 阵列之间的电感(L1 和 L2)、TVS 和地之间的电感(L3)以及 TVS 和受保护集成电路之间的电感.。 只有当 L4 大于 L1-3 时,ESD 电流才能被强制接地。

半导体芯片

优化 TVS 周围的阻抗  

下图显示了一个项目的PCB布局。从下图中可以看出来,PCB的这一部分有一个USB端口,为了保护 FT231X UART (U1),我们在它和端口之间的路径上放置了一个 USBLC6-4SC6 ESD 抑制器 (U2)。

半导体芯片

PCB ESD保护布局   这里有2点需要注意:

抑制器 (U2) 放置在靠近 ESD 源(USB 端口)的位置,电感 L4 变得比 L1 大得多,这迫使 ESD 电流流向 TVS。

抑制器直接放置在从 ESD 源到受保护 IC 的路径上,从而完全移除 L2。

2、限制静电放电的 EMI

ESD 产生强电压脉冲,可对附近的其他信号线产生电磁干扰 (EMI)。辐射的主要来源位于 ESD 源和用作天线的抑制器之间。

如果可能,在设计上应该使抑制器区域远离其他电路和未受保护的走线,否则它们会将 ESD 信号传送到其他 IC。即使不考虑每条线路的电感,受保护线路和相邻的未受保护线路也可以充当电容,从而允许电压浪涌在两条线路之间传递。下图说明了 ESD 脉冲如何耦合到未受保护的线路:

半导体芯片

ESD 耦合到附近的走线,因为这两条走线就像一个电容  

限制 EMI 的另一种方法是使用直线和短路径,因为拐角会辐射 EMI。在这种情况下,使用直线是不可能的。相反,我们使用了 45° 弯曲。

半导体芯片

PCB ESD保护电路布局  

3、正确使用VIA

在多层 PCB 中,过孔可以用作带有寄生电感,减少不必要走线。下图中,ESD源和受保护IC在同一层,而TVS在另一层,在这里,VIA 作为 L2 工作,导致 ESD 电流在 TVS 和 IC 之间分流,因此必须要避免这种布局。 在这种情况下,尽管 TVS 在其路径上,但一部分 ESD 电流将流向受保护的 IC。

半导体芯片

PCB 最差布局  

理想情况下,ESD 源和 TVS 应该放在同一层,如下图所示。这样,ESD 电流先流过 TVS 保护引脚,然后再通过 VIA 流向受保护电路。在这种情况下,TVS 直接位于从 ESD 源到受保护电路的路径上。

半导体芯片

用于ESD保护的最佳PCB布局  

在这个特殊的 PCB 设计中,ESD 源(USB 连接器)在两个不同的层上有两条走线。但是将ESD源和TVS放同一个水平面是不可能的,因此采用了一个可以接受的布局。

这里也可能会遇到一种相反的情况:TVS 和受保护的 IC 位于同一层,但 ESD 源(来自 USB 的两条走线)位于不同的层。虽然如此,但这样设计VIA也是正确的,因为TVS 保护引脚会在 ESD 电流流向 IC 之前接收它。

半导体芯片

用于ESD保护的VIA布局  

如果无法实现理想的布局,可接受的折中方案是按以下方式将 ESD 电流强制流向 TVS:虽然这种布线对于 ESD 保护来说并不完美,但如果没有其他选择,也可以采用这个方式。

半导体芯片

使用VIAS妥协路由  

4、放置ESD 抑制器

选择与电路电气特性兼容的 ESD 抑制器后,下一个需要考虑的是放在哪里。放置时应使 IC 在发生 ESD 时接收到尽可能低的电压浪涌。

对于中频信号和典型的 ESD 脉冲,PCB 走线就像电感一样,意味着它们的阻抗随频率 (ωL) 增加。带有 TVS 二极管的电路现在如下所示:

半导体芯片

线路电感对 ESD 的影响  

从上图中我们可以清楚的看到,当L2>>L1时,二极管会快速触发。这也意味着大部分电流将被引导离开受保护线路,L2 还将耗散留在受保护线路上的任何 ESD。

这意味着我们需要将 TVS 二极管放置在尽可能靠近可能发生 ESD 的位置。ESD 抑制器连接到线路或地的电感应该最小。ESD脉冲的能量随着走线长度的增加而降低,因此ESD抑制器与被保护IC之间的走线长度应尽可能长。  

5、ESD 源和抑制器之间正确添加过孔

如果 ESD 源和抑制器之间有过孔,过孔也会导致耦合到未受保护的线路。理想情况下,ESD 源和抑制器之间不应有任何过孔,因为它会增加线路的长度,从而导致线路上的电感增加。这有两个不利影响:

会增加被保护线路中的ESD脉冲能量

会通过 EMI 增加未受保护的线路产生的信号

如果工程师没有其他办法,必须要添加过孔,那么就必须要确保保护线和抑制器在PCB的同一个侧,且源极在过孔后连接保护线(下图中的案例一)。 最差的是源线和保护西安在同一侧,而ESD抑制器在另一侧,必须要避免这种情况(下图中的案例二)。在这种情况下,最好使用另一个过孔在ESD抑制器之后连接受保护线路,而不是直接将ESD源直接连接到受保护线路(下图中案例3)。

半导体芯片

挣钱去添加过孔以减少 ESD 对受保护线路的影响  

6、适当的接地布线

在上面的内容中已经有说明,我们需要降低源极和TVS二极管之间的走线电感,将电压脉冲远离我们需要保护的IC,在那里我们是假定ESD抑制器具有良好的接地。但实际上,ESD源TVS二极管之间或者TVS二极管和地之间可能存在一些电感,如下图所示:

半导体芯片

抑制器上的寄生电感可以将更多的 ESD 电压引导回 IC  

我们可以通过将 TVS 放置在尽可能靠近信号源的位置来降低 L3。为了减少 L4,我们使用过孔将 TVS 接地引脚直接连接到接地层。如果无法直接连接,则在通往地平面的走线上并联使用多个过孔。

这样的话应该让每个过孔和焊盘尺寸上的钻孔直径更大,以增加表面积(以对抗集肤效应)。TVS 抑制器上的接地过孔应填充非导电材料,以保持较大的表面积。








审核编辑:刘清

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分