×

声发射波的探测

消耗积分:0 | 格式:rar | 大小:3444 | 2009-11-15

33391

分享资料个

声发射源(缺陷)在外力诱导下发出一种应力脉冲波即声发射信号。这种应力脉冲波即声发射信号是机械振动波在声发射源所在材料中传播。所谓声发射检测就是检测接收上述声发射信号并进行分析得到声发射源(缺陷)的信息。由于声发射信号的每个脉冲都包含着一个频率谱,这个频率谱所包括的频率范围可以从几赫兹到几十个兆赫兹,因此,在进行某项具体的检测工作时,首先应该知道所要检测的缺陷在外力作用下产生的声发射的大致频率范围,然后再从这个总范围内选择一个最适合的频率窗口,以便滤去噪声的干扰。一般的机械噪声和电气噪声的频率都比较低,因此在声发射检测中首先要确定频率窗口的下限。在频率窗口确定后,就能依此为根据来选定传感器和带通滤波器。
3.1 探测处理转换过程——压电效应等
固体介质中传播的声发射信号含有声发射源的特征信息,要利用这些信息反映材料特性或缺陷发展状态,就要在固体表面接收这种声发射信号。声发射信号是瞬变随机波信号,垂直位移极小约为10-7~10-14米,频率分布在次声到超声频率范围(几赫兹到几十兆赫兹)。这就要求声发射检测仪器具有高响应速度、高灵敏度、高增益、宽动态范围、强阻塞恢复能力和频率检测窗口可以选择等性能。在实际的声发射检测过程中,检测到的信号往往是经过多次反射和波形变换的复杂信号。声发射信号由传感器接收并转换成电信号,传感器根据特定的校准方法,给出频率—灵敏度曲线,据此可根据检测目的和环境选择不同类型、不同频率和灵敏度的传感器。
传感器是利用某些物质(如半导体、陶瓷、压电晶体、强磁性体和超导体等)的物理特性随着外界待测量作用而发生变化的原理制成的。它利用了诸多的效应(包括物理效应、化学效应和生物效应)和物理现象,如利用材料的压阻、湿敏、热敏、光敏、磁敏和气敏等效应,把应变、湿度、温度、位移、磁场、煤气等被测量变换成电量。而新原理、新效应的发现和利用,新型物性材料的开发和应用,使物性型传感器得到很大的发展。因此了解传感器所基于的各种效应,对其理解、开发和应用都是非常必要的。在声发射检测过程中,通常使用的是压电效应。
压电效应是可逆的,它是正压电效应和逆压电效应的总称。习惯上把正压电效应称为压电效应。
当某些电介质沿一定方向受外力作用而变形时,在其一定的两个表面上产生正负异号电荷,当外力去掉后,又恢复到不带电的状态,这种现象就被称为正压电效应。电介质受力所产生的电荷与外力的大小成正比,比例系数为压电常数,它与机械形变方向有关,对一定材料一定方向则为常量。电介质受力产生电荷的极性取决于变形的形式(压缩或伸长)。
具有明显压电效应的材料称为压电材料,常用的有石英晶体、铌酸锂LiNbO3、镓酸锂LiGaO3、锗酸铋Bi12GeO20等单晶和经极化处理后的多晶体如钛酸钡压电陶瓷、锆钛酸铅系列压电陶瓷PZT。新型压电材料有高分子压电薄膜(如聚偏二氟乙烯PVDF)和压电半导体(如ZnO、CdS)。单晶材料的压电效应是由于这些单晶受外应力时其内部经格结构变形,使原来宏观表现的电中性状态被破坏而产生电极化。经极化(一定温度下加以强电场)处理后的压电陶瓷、高分子压电薄膜的压电性是电畴、电极偶子取向极化的结果。
利用正压电效应制成的压电式传感器,将压力、振动、加速度等非电量转换成电量,从而进行精密测量。
当在电介质的极化方向施加电场,某些电介质在一定的方向上将产生机械变形或机械应力,当外电场撤去后,变形或应力也随之消失,这种物理现象称为逆压电效应。利用逆压电效应可制成超声波发生器、压电扬声器、频率高度稳定的晶体振荡器(如每昼夜误差<2×10-5s的石英钟、表)等。逆压电效应可用于声发射信号产生。
由于压电转换元件具有自发电和可逆两种重要性能,加上它体积小、重量轻、结构简单、工作可靠、固有频率高、灵敏度和信噪比高等优点,因此,压电式传感器的应用获得迅速的发展。利用正压电效应研制的压电电源、煤气炉和汽车发动机的自动点火装置等多种电压发生器;在测试技术中,压电转换元件是一种典型的力敏元件,能测量最终可变换成力的那些物理量,例如压力、加速度、机械冲击和振动等,因此在声学、力学、医学和宇航等广阔领域中都可见到压电式传感器的应用。更有重要意义的是:根据生物压电学的结果认识到生物都具有压电性,人的各种感觉器官实际上是生物压电传感器。如根据正压电效应治疗骨折,可以加速痊愈;用逆压电效应,对骨头通电具有矫正畸形骨等功能。
压电转换元件的主要缺点是无静态输出,要求有很高的电输出阻抗,需用低电容的低噪声电缆,很多压电材料的工作温度只有250℃左右。
3.2 传感器
当前,由于电子技术、微电子技术、电子计算机技术的迅速发展,使电学量最具有便于处理、便于测量等特点,因此传感器通常由敏感元件、转换元件和转换电路组成,输出电学量。这些元件的功能是:
敏感元件:直接感受被测量,并以确定关系输出某一物理量(包括电学量)。
转换元件:将敏感元件输出的非电物理量,如位移、应变、应力、光强等转换为电学量(包括电路参数量、电压、电流等)。
转换电路:将电路参数(如电阻、电感、电容等)量转换成便于测量的电量,例如电压、电流、频率等。
有些传感器只有敏感元件,如热电偶,它感受被测温差时直接输出电动势。有些传感器由敏感元件和转换元件组成,无需转换电路,例如压电式加速度传感器。还有些传感器由敏感元件和转换电路组成,如电容式位移传感器。有些传感器,转换元件还不只一个,要经若干次转换才输出电量。
目前,由于空间的限制或者技术等原因,转换电路一般不和敏感元件、转换元件装在一个壳体内,而是装在电箱内。但不少传感器需通过转换电路才输出便于测量的电量,而转换电路的类型又与不同工作原理的传感器有关。因此,把转换电路作为传感器的组成环节之一。
传感器的种类繁多,应用极广。但为了满足各种参数的检测,除了需要研制新型敏感元件,增加元件品种以及改善其性能外,还需用正确的构成传感器的方法,即用敏感元件、转换元件、转换电路的不同组合方法,去达到检测各种参数的目的。本节主要介绍压电原理的声发射传感器。
3.2.1 结构
声发射传感器一般由壳体、保护膜、压电元件、阻尼块、连接导线及高频插座组成。压电元件通常采用锆钛酸铅、钛酸钡和铌酸锂等。根据不同的检测目的和环境采用不同结构和性能的传感器。其中,谐振式高灵敏度传感器是声发射检测中使用最多的一种。单端谐振式传感器的结构简单,如图3.1所示。将压电元件的负电极面用导电胶粘贴在底座上;另一面焊出一根很细的引线与高频插座的芯线连接,外壳接地。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !