×

DSP和专用接口芯片的USB设计实现

消耗积分:1 | 格式:rar | 大小:0.3 MB | 2017-11-03

分享资料个

 引言
  各种测量仪器检测到的数据常常需要传送到PC机进行数据处理与存档,以充分利用PC机丰富的硬件和软件资源,获得更为完善和强大的数据处理、分析和存储能力。传统PC平台的数据采集卡受PC机插槽数目、地址、中断等硬件和软件资源的限制,可扩展性较差,安装拆卸困难,成本高。
  自1994年11月提出通用串行总线(USB)以来,USB以其传输速率高、支持热插拔、易于扩展的突出优势,发展速度惊人,迅速席卷电子产品世界。在市场需求的强力驱动下,从1998年开始,USB接口进入测量仪器领域,并逐步被许多著名仪器公司接纳。在测量仪器中扩展USB接口已经成为一种发展趋势。针对不同的测量仪器,寻求一种普遍适用的USB接口解决方案,对于测量仪器的开发设计有十分重要的意义。
  方案选择
  开发USB设备一般有三种方式:一种是使用带USB接口的专用微控制器(MCU),这类MCU有自己的系统结构和指令,从底层专用于USB控制,比如Cypress公司的CY7C63xxx和CY7C64013,这类MCU的开发需要用专用工具,且性能有限;第二种方式是使用带USB接口的通用MCU,这类MCU只是基于一般芯片内核增加了USB接口,比如Intel公司的8x931、8x930以及Cypress公司的EZUSB等,这类MCU的开发语言和开发工具都和一般MCU相似,因而较易入手,但其缺点是成本较高;第三种方式是使用纯粹的USB接口芯片,通过外加MCU对其控制。如Philips公司的PDIUSBD12、ISP1581以及National公司的USBN9602、南京沁恒公司的CH372、CH375等。这类USB接口芯片价格较低、接口方便、灵活性高,针对不同的硬件环境可以配合多种MCU使用,如单片机、DSP、FPGA都可以。综合各方面因素考虑,本设计选用第三种方式,即采用专用USB接口芯片为测量仪器扩展USB接口。
  硬件设计
  USB控制器
  USB控制器通过控制USB接口芯片实现协议处理和数据交换。在本设计中选用DSP芯片TMS320VC33作为微控制器,这主要是基于两方面的考虑:一是其运算速度较快,指令周期仅为13nS,可以最大限度地发挥USB接口芯片的潜力;二是该DSP芯片性价比高,且具有浮点运算功能,扩展浮点精度可达40位。
  USB接口芯片
  USB接口芯片用以完成USB通信底层的数据链路级交换,并对本地微控制器提供一个并行接口。
  本文选用PHILIPS公司的PDIUSBD12作为USB接口芯片。该芯片可与任何微控制器实现高速并行接口(2Mb/s),允许使用现存的体系结构并使固件投资减到最小。这种灵活性减少了开发时间、风险和成本,是开发高效低成本的USB外围设备的一种快捷途径。
  PDIUSBD12一共有三组端点:端点0完成控制传输;端点1可以配置成中断传输;端点2有128B的缓冲区,是主要的数据传输端点。
  接口电路
  DSP与PDIUSBD12的连接如图1所示。采用单独地址/数据总线配置,即用DSP的某地址线控制PDIUSBD12的A0引脚,实现命令数据的选择。A0=1表示传送命令,A0=0表示传送数据。片选(CS )及挂起(SUSPEND)信号分别由DSP的I/O口控制。读写选通信号WR 、RD 可以用DSP的R/W引脚及其取反后控制。但这样需要在电路中增加反相器,为了节约器件从而缩小电路体积,可以另外选择一个I/O口控制PDIUSBD12的读选通RD。本设计中选用PAGE1,通过对不同地址的访问来区分对PDIUSBD12的读写操作。这样PDIUSBD12只占用微控制器的三个地址资源,其一用来向PDIUSBD12写命令,其二用来向PDIUSBD12写数据,另外一个用来从PDIUSBD12读数据。对DSP而言,PDIUSBD12就相当于一个有8位数据总线和3个地址的存储器件。
  DSP和专用接口芯片的USB设计实现
  图1 USB接口连接示意图
  设备采用自供电方式,需要将EOT 通过一个10k?的电阻接至USB电缆的VCC(+5V)端,并加1M?下拉电阻,借此检测USB设备是否已经连接到USB口。
  软件设计
  USB软件设计包括固件(firmware)程序、PC端的驱动程序和应用程序。其中固件程序要求编写者对复杂的USB通信协议有深刻的理解,编程难度较高,在本论文中将详细介绍。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !