×

浅谈超低功耗技术可延长物联网无线传感器使用寿命

消耗积分:1 | 格式:rar | 大小:0.6 MB | 2017-11-10

分享资料个

导读:
  物联网 (IoT) 中一个最大的技术挑战就是传感器节点会出现在任何地方。这些传感器能够在已联网住宅中被用于测量温度和湿度、在实施养护监视中被用于测量高速公路桥梁的机械应力,或是在智能流量计量过程中被用于测量燃气和自来水使用量等参数。这些数据被服务器采集处理后,需要一个广泛的覆盖区域,通过可靠数据从而形成稳健耐用的网络。实现这一过程的技术即是将传感器数据无线传输至一个中央主机系统。
  为了实现诸如此类的大型网络,还必须将另外一个关键领域考虑在内,那就是整个传感器节点必须有非常长的运行使用寿命这一特征。使用寿命越长,养护成本越低。借助微控制器的功率优化和诸如LiSOC12主电池的电池类型,这些处理器的供电运行时间可以达到10年或更长的时间。
  直到今天,更长距离的传感器数据射频 (RF) 传输还未得到广泛实施。这个无线特性使得系统的功耗考虑更加复杂。虽然无线传感器节点需要消耗尽可能低的平均功率,它还必须能够为偶尔出现的数据传输传送高峰值电流。
  从功耗角度来讲,这便意味着传感器系统内的最低静态电流与针对功率放大器的高效高功率能力之间需要相互组合。这也意味着器件、以及整体电源架构本身选型方面的全新挑战。
  低静态电流和长使用寿命
  为了确保IoT-传感器成为现实,传感器的运行必须具有成本有效性。一旦传感器被安装和启动,它的运行时间需要尽可能的长,以最大限度地减小养护访问周期,并节约成本。
  这意味着,一方面,必须选择经久耐用的材料和组件。另一方面,内部电路也必须特有最低静态电流,以便在电池电能一定的情况下获得更长的运行时间。
  目前,这些应用使用特定的主电池。诸如LiSOC12的化学电池类型特有超过1Wh/cm³ 的非常高的能量密度,并且人们可在市面上轻易地买到。这些主电池的自放电极低,而这正是需要考虑的另外一个方面。这就使得它们成为延长应用使用寿命的第一选择。
  为了从这些参数中受益,电池电流必须被限制在5mA以下。超过了这个值的电流会增加自放电率,从而降低电池的使用寿命。由于内部阻抗,更高的电流也会强制端子电压增加。除了优化电池本身,为了尽可能地减少电流泄露,也必须优化耗能组件和电源架构。
  超低功耗微控制器片上系统 (SoC) 器件特有数个低功耗模式,以减少流耗。一个超低功耗SoC延长了应用使用寿命,其原因在于其执行的待机模式,当直接与电池相连时,器件的流耗大约为2µA。图1显示的是这款器件在低功耗模式 (LPM3) 下的电源电流。流耗取决于电源电压(绿色迹线)。
  当SoC与一个超低功耗降压转换器组合在一起使用,以减少电源电压时,流耗被进一步减少。这些是静态电流为几百分之毫微安培的降压转换器。蓝色迹线显示的是,把电源电压降压至2.1V后,这个应用汲取的电流。电池电压越高,节省的电能就越多,其原因来自高效的降压转换。在3.6V的典型LiSOC12电池端子电压上,总体流耗比直接电池连接下降了30%。
  浅谈超低功耗技术可延长物联网无线传感器使用寿命
  图1:将微控制器SoC与一个降压升压转换器组合在一起,可以将功耗减少30%
  针对无线传输的峰值功率
  除了低IQ方面,传感器必须将搜集和处理的数据传至一个基站。例如,可以是一个本地数据集中器,它常用于公寓楼内的智能燃气传感器。除了无线仪表计量总线(无线M-Bus),这也可以是用于高速桥梁上现场传感器节点的全球移动通信系统 (GSM) 基础设施。
  一个典型的工作模式就是全天搜集和处理数据,然后将采集到的数据在一天之内最多传输数次。从功率角度来讲,这表示,大多情况都需要维持在数微安范围内的低平均流耗,偶尔则需要对仅出现数毫秒的更高电流做出相应支持。因此,数据传输所需要的能量数量取决于范围和射频协议。广泛使用的标准是无线M-Bus和GSM。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !