×

电压模式、迟滞或基于迟滞怎样选择

消耗积分:1 | 格式:rar | 大小:0.4 MB | 2017-11-16

分享资料个

 每一位电源工程师都熟知并学习过电压模式和电流模式控制这些传统的控制拓扑,但却不太了解基于迟滞的拓扑及其优势。虽然纯迟滞控制对于诸如医疗或工业自动化等特定应用可能并不实用,然而许多比较新的电源拓扑都是基于迟滞的,并且拥有旨在克服纯迟滞控制的缺陷的额外特性。此类拓扑被运用于从处理器内核供电到汽车系统等广泛领域。
  几乎所有的电源均是专为提供一个稳定的输出电压或电流而设计的。提供这种输出调节功能需要一个闭环系统和即将被调节的输出电压或电流的反馈。尽管有很多种用于对可用反馈环路进行补偿的不同控制拓扑,但它们通常都可以被归为两类:脉宽调制 (PWM) 或迟滞。在这两种基本拓扑的基础上演变出了第三种拓扑,其为此二者的融合:基于迟滞的拓扑。针对不同的应用,这些控制拓扑各有优缺点。
  电压模式控制
  脉宽调制 (PWM) 控制被归为两种基本类型:电压模式和电流模式。为简单起见,本文只讨论采用输入电压前馈的电压模式控制。有关电压模式与电流模式更为详细的比较,请见参考文献 1。图 1 示出了降压转换器中电压模式控制的基本方框图 2。
  电压模式、迟滞或基于迟滞怎样选择
  图 1:电压模式控制包括了误差放大器、时钟和内部基准电压 (VREF)
  当采用电压模式控制来调节输出电压时,它通过一个连接至其反馈 (FB) 输入的阻性分压器来检测输出电压的缩小版。具有高增益的误差放大器随后将该FB信号与一个高准确度内部基准电压进行比较。围绕误差放大器的环路补偿电路负责保持系统的稳定。
  电压模式控制拥有诸多的优势。通过仅调节输出电压和其他良好受控的内部信号(比如:时钟和内部基准电压),该拓扑具备非常强的抗噪声能力。而且它还相当地简单明了。利用输入电压前馈保持了简单性,以在不断变化的输入电压条件下维持恒定的环路增益。此外,输入电压前馈还可大幅改善针对线路电压瞬变的响应。最后,时钟实现了开关频率的控制,包括使电路同步至一个外部时钟源的可能性。
  电压模式控制的主要劣势是必需的环路补偿及对应的环路带宽限制。就其本质而言,电压模式控制在功率级中引入了一个双极点,该双极点位于输出滤波器的转折频率,因而需要在误差放大器的周围布设两个正确定位的零点。由于该双极点的频率通常很低,因而环路带宽被限制在较低的水平。一般情况下,其被限制为不超过开关频率的 1/10。这对电源的瞬态响应产生了显著的负面影响。因此,设计人员必须通过增加输出电容来获得更好的瞬态结果,从而导致系统成本升高。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论(0)
发评论

下载排行榜

全部0条评论

快来发表一下你的评论吧 !