主流射频半导体材料及特性介绍

RF/无线

1773人已加入

描述

半导体材料是一类具有半导体性能(导电能力介于导体与绝缘体之间,电阻率约在1mΩ·cm~1GΩ·cm范围内)、可用来制作半导体器件和集成电路的电子材料。按种类可以分为元素半导体和化合物半导体两大类,元素半导体指硅、锗单一元素形成的半导体,化合物指砷化镓、磷化铟等化合物形成的半导体。

随着无线通信的发展,高频电路应用越来越广,今天我们来介绍适合用于射频、微波等高频电路的半导体材料及工艺情况。

砷化镓GaAs

砷化镓的电子迁移速率比硅高5.7 倍,非常适合用于高频电路。砷化镓组件在高频、高功率、高效率、低噪声指数的电气特性均远超过硅组件,空乏型砷化镓场效晶体管(MESFET)或高电子迁移率晶体管(HEMT/PHEMT),在3 V 电压操作下可以有80 %的功率增加效率(PAE: power addedefficiency),非常的适用于高层(high tier)的无线通讯中长距离、长通信时间的需求。

砷化镓元件因电子迁移率比硅高很多,因此采用特殊的工艺,早期为MESFET 金属半导体场效应晶体管,后演变为HEMT ( 高速电子迁移率晶体管),pHEMT( 介面应变式高电子迁移电晶体)目前则为HBT ( 异质接面双载子晶体管)。异质双极晶体管(HBT)是无需负电源的砷化镓组件,其功率密度(power density)、电流推动能力(current drive capability)与线性度(linearity)均超过FET,适合设计高功率、高效率、高线性度的微波放大器,HBT 为最佳组件的选择。而HBT 组件在相位噪声,高gm、高功率密度、崩溃电压与线性度上占优势,另外它可以单电源操作,因而简化电路设计及次系统实现的难度,十分适合于射频及中频收发模块的研制,特别是微波信号源与高线性放大器等电路。

砷化镓生产方式和传统的硅晶圆生产方式大不相同,砷化镓需要采用磊晶技术制造,这种磊晶圆的直径通常为4-6 英寸,比硅晶圆的12 英寸要小得多。磊晶圆需要特殊的机台,同时砷化镓原材料成本高出硅很多,最终导致砷化镓成品IC 成本比较高。磊晶目前有两种,一种是化学的MOCVD,一种是物理的MBE。

氮化镓GaN

在宽禁带半导体材料中,氮化镓(GaN)由于受到缺乏合适的单晶衬底材料、位错密度大等问题的困扰,发展较为缓慢,但进入90年代后,随着材料生长和器件工艺水平的不断发展,GaN半导体材料及器件的发展十分迅速,目前已经成为宽禁带半导体材料中耀眼的新星。

GaN半导体材料的应用首先是在发光器件领域取得重大突破的。1991年,日本日亚(Nichia)公司首先研制成功以蓝宝石为衬底的GaN蓝光发光二极管(LED),之后实现GaN基蓝、绿光LED的商品化。该公司利用GaN基蓝光LED和磷光技术,开发出了白光发光器件产品,具有高寿命、低能耗的特点。此外,还首先研制成功GaN基蓝光半导体激光器。

用GaN基高效率蓝绿光LED制作的超大屏幕全色显示,可用于室内室外各种场合的动态信息显示。高效率白光发光二极管作为新型高效节能固体光源,使用寿命超过10万小时,可比白炽灯节电5~10倍,达到了节约资源、减少环境污染的双重目的。目前,GaN基LED的应用十分广泛,您每天都可能会见到它的身影,在交通信号灯里、彩色视频广告牌上、小孩的玩具中甚至闪光灯里。GaN 基LED的成功引发了光电行业中的革命。GaN基蓝光半导体激光器主要用于制作下一代DVD,它能比现在的CD光盘提高存储密度20倍以上。

利用GaN材料,还可以制备紫外(UV)光探测器,它在火焰传感、臭氧检测、激光探测器等方面具有广泛的应用。此外,在电子器件方面,利用GaN材料,可以制备高频、大功率电子器件,有望在航空航天、高温辐射环境、雷达与通信等方面发挥重要作用。例如在航空航天领域,高性能的军事飞行装备需要能够在高温下工作的传感器、电子控制系统以及功率电子器件等,以提高飞行的可靠性,GaN基电子器件将起着重要作用,此外由于它在高温工作时无需制冷器而大大简化电子系统,减轻飞行重量。

磷化铟InP

磷化铟是继硅和砷化镓之后又一重要的Ⅲ一V族化合物半导体材料,几乎在与锗、硅等第一代元素半导体材料的发展和研究的同时,科学工作者对化合物半导体材料也开始了大量的探索工作。

两个器件1GHz 时的插入耗损仅为0.5dB、P1dB 压缩率为32dBm、绝缘度在1GHz 时高达44dB。两种器件在3V 时静态电流仅为8μA、ESD 高达2kV。PE4273 采用6 脚SC-70 封装,绝缘值为35dB。PE4272 采用8 脚MSOP 封装,绝缘值为44dB。10K 订购量时,PE4272 和PE4273 的价格分别为0.45 和0.30 美元。

和Peregrine 公司有合作关系的日本冲电气也开发了类似产品,冲电气称之为SOS 技术,SOS技术是以"UTSi"为基础开发的技术。"UTSi"技术是由在2003 年1 月与冲电气建立合作关系的美国派更半导体公司(Peregrine Semiconductor Corp.)开发的。在蓝宝石底板上形成单晶硅薄膜,然后再利用CMOS 工艺形成电路。作为采用具有良好绝缘性的蓝宝石的SOS 底板,与硅底板和SOI(绝缘体上硅)底板相比,能够降低在底板上形成的电路耗电量。冲电气开发的RF 开关的耗电电流仅为15μA(电源电压为2.5~3V),与使用GaAs 材料的现有RF 开关相比,耗电量降到了约1/5。

Si BiCMOS

以硅为基材的集成电路共有Si BJT(Si-Bipolar Junction Transistor)、Si CMOS、与结合Bipolar与CMOS 特性的Si BiCMOS(Si Bipolar Complementary Metal Oxide Semiconductor)等类。由于硅是当前半导体产业应用最为成熟的材料,因此,不论在产量或价格方面都极具优势。传统上以硅来制作的晶体管多采用BJT 或CMOS,不过,由于硅材料没有半绝缘基板,再加上组件本身的增益较低,若要应用在高频段操作的无线通信IC 制造,则需进一步提升其高频电性,除了要改善材料结构来提高组件的fT,还必须藉助沟槽隔离等制程以提高电路间的隔离度与Q 值,如此一来,其制程将会更为复杂,且不良率与成本也将大幅提高。

因此,目前多以具有低噪声、电子移动速度快、且集成度高的Si BiCMOS 制程为主。而主要的应用则以中频模块或低层的射频模块为主,至于对于低噪声放大器、功率放大器与开关器等射频前端组件的制造仍力有未逮。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 相关推荐

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分