模数转换器的内部结构解析

转换器

10人已加入

描述

  一、模数转换器简介

  模数转换器即A/D转换器,或简称ADC,通常是指一个将模拟信号转变为数字信号的电子元件。通常的模数转换器是将一个输入电压信号转换为一个输出的数字信号。由于数字信号本身不具有实际意义,仅仅表示一个相对大小。故任何一个模数转换器都需要一个参考模拟量作为转换的标准,比较常见的参考标准为最大的可转换信号大小。而输出的数字量则表示输入信号相对于参考信号的大小。

  二、模数转换器的主要技术指标

  分辨率

  通常以输出二进制或十进制数字的位数表示分辨率的高低,因为位数越多,量化单位越小,对输入信号的分辨能力就越高。

  例如:输入模拟电压的变化范围为 0~5 V,输出 8 位二进制数可以

  分辨的最小模拟电压为 5 V&TImes;2-8 =20 mV;而输出 12 位二进制数可以

  分辨的最小模拟电压为 5 V&TImes;2-12≈1.22 mV。

  转换误差

  它是指在零点和满度都校准以后,在整个转换范围内,分别测量各个 数字量所对应的模拟输入电压实测范围与理论范围之间的偏差,取其 中的最大偏差作为转换误差的指标。通常以相对误差的形式出现,并 以 LSB 为单位表示。例如 ADC0801 的相对误差为±¼ LSB。

  转换速度

  完成一次模数转换所需要的时间称为转换时间。大多数情况下,转换 速度是转换时间的倒数。

  ADC 的转换速度主要取决于转换电路的类型,并联比较型 ADC 的转换速度最高(转换时间可小于 50 ns),逐次逼近型 ADC 次之(转 换时间在 10~100μs 之间),双积分型 ADC 转换速度最低(转换时 间在几十毫秒至数百毫秒之间)。

  三、A/D转换器的工作原理

  主要介绍以下三种方法:逐次逼近法、双积分法、电压频率转换法

  1)逐次逼近法

  逐次逼近式A/D是比较常见的一种A/D转换电路,转换的时间为微秒级。采用逐次逼近法的A/D转换器是由一个比较器、D/A转换器、缓冲寄存器及控制逻辑电路组成,如图所示。

模数转换器

  基本原理是从高位到低位逐位试探比较,好像用天平称物体,从重到轻逐级增减砝码进行试探。

  逐次逼近法的转换过程是:初始化时将逐次逼近寄存器各位清零;转换开始时,先将逐次逼近寄存器最高位置1,送入D/A转换器,经D/A转换后生成的模拟量送入比较器,称为 Vo,与送入比较器的待转换的模拟量Vi进行比较,若Vo《Vi,该位1被保留,否则被清除。然后再置逐次逼近寄存器次高位为1,将寄存器中新的数字量送D/A转换器,输出的 Vo再与Vi比较,若Vo《Vi,该位1被保留,否则被清除。重复此过程,直至逼近寄存器最低位。转换结束后,将逐次逼近寄存器中的数字量送入缓冲寄存器,得到数字量的输出。逐次逼近的操作过程是在一个控制电路的控制下进行的。

  2)双积分法

  采用双积分法的A/D转换器由电子开关、积分器、比较器和控制逻辑等部件组成。如图所示。基本原理是将输入电压变换成与其平均值成正比的时间间隔,再把此时间间隔转换成数字量,属于间接转换。双积分法积分法A/D转换的过程是:先将开关接通待转换的模拟量Vi,Vi采样输入到积分器,积分器从零开始进行固定时间T的正向积分,时间T到后,开关再接通与Vi极性相反的基准电压VREF,将VREF输入到积分器,进行反向积分,直到输出为0V时停止积分。Vi越大,积分器输出电压越大,反向积分时间也越长。计数器在反向积分时间内所计的数值,就是输入模拟电压Vi所对应的数字量,实现了A/D转换。

  3)电压频率转换法

  采用电压频率转换法的A/D转换器,由计数器、控制门及一个具有恒定时间的时钟门控制信号组成,它的工作原理是V/F转换电路把输入的模拟电压转换成与模拟电压成正比的脉冲信号。电压频率转换法的工作过程是:当模拟电压Vi加到V/F的输入端,便产生频率F与Vi成正比的脉冲,在一定的时间内对该脉冲信号计数,时间到,统计到计数器的计数值正比于输入电压Vi,从而完成A/D转换。

 

  四、模数转换器结构

  模数转换器的种类很多,按工作原理的不同,可分成间接ADC和直接ADC

  间接ADC是先将输入模拟电压转换成时间或频率,然后再把这些中间量转换成数字量,常用的有中间量是时间的双积分型ADC。直接ADC则直接转换成数字量,常用的有并联比较型ADC和逐次逼近型ADC。

  并联比较型ADC:由于并联比较型ADC采用各量级同时并行比较,各位输出码也是同时并行产生,所以转换速度快是它的突出优点,同时转换速度与输出码位的多少无关。并联比较型ADC的缺点是成本高、功耗大。因为n位输出的ADC,需要2n个电阻,(2n-1)个比较器和D触发器,以及复杂的编码网络,其元件数量随位数的增加,以几何级数上升。所以这种ADC适用于要求高速、低分辩率的场合。逐次逼近型ADC:逐次逼近型ADC是另一种直接ADC,它也产生一系列比较电压VR,但与并联比较型ADC不同,它是逐个产生比较电压,逐次与输入电压分别比较,以逐渐逼近的方式进行模数转换的。逐次逼近型ADC每次转换都要逐位比较,需要(n+1)个节拍脉冲才能完成,所以它比并联比较型ADC的转换速度慢,比双分积型ADC要快得多,属于中速ADC器件。

  另外位数多时,它需用的元器件比并联比较型少得多,所以它是集成ADC中,应用较广的一种。双积分型ADC:属于间接型ADC,它先对输入采样电压和基准电压进行两次积分,以获得与采样电压平均值成正比的时间间隔,同时在这个时间间隔内,用计数器对标准时钟脉冲(CP)计数,计数器输出的计数结果就是对应的数字量。双积分型ADC优点是抗干扰能力强;稳定性好;可实现高精度模数转换。主要缺点是转换速度低,因此这种转换器大多应用于要求精度较高而转换速度要求不高的仪器仪表中。

  五、常见A/D转换器

模数转换器

  这是国半公司的8位逐次逼近式A/D转换器,有两个输入通道(CH0和CH1),串口输出,通过编程实现AD转换和通道选择。

模数转换器

  这是MAXIM公司的双积分A/D转换器,4位半的输出精度,相当于二进位的14位精度。动态字位扫描BCD码输出,现在用的4位半的万用表中一般都用的是这个片子,上面的电路是基本与厂方推荐的电路相同,有点小小的改进,引进了SD4这个20欧姆的电阻,能够提高稳定性。

模数转换器

  AD7714就是我前面所说的那种Σ-Δ型A/D转换器,这个器件不单是一个A/D转换器,而且是个完整的模拟检测前端电路,24位精度,SPI接口输出,包括内部可编程的放大器,采样保持器,可编程的数字滤波器等,功能非常强大,使用非常方便。现在已经有中文的应用手册可以参考。我认为,这种模拟检测前端是AD转换器的发展方向。更有甚者将这些和数字处理器结合在一起,制成所谓的单片仪器、程序化仪器,通过编程实现功能,很太方便。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分