LM358应用电路之PWM滤波数模转换电路

IC应用电路图

458人已加入

描述

  LM358简介

  LM358是双运算放大器。内部包括有两个独立的、高增益、内部频率补偿的运算放大器,适合于电源电压范围很宽的单电源使用,也适用于双电源工作模式,在推荐的工作条件下,电源电流与电源电压无关。它的使用范围包括传感放大器、直流增益模块和其他所有可用单电源供电的使用运算放大器的场合。

PWM

  本文主要是对基于LM358芯片的PWM滤波数模转换电路的介绍。

  PWM滤波的理论分析

PWM
实际电路中典型的PWM波形

  PWM是一种周期一定而占空比可以调制的方波信号,上图中是一种在实际电路中经常遇到的典型PWM波形。该PWM的高低电平分别为VH和VL,理想的情况VL等于0,但实际一般不等于0。

  本文假设PWM为理想情况,PWM的幅值为A,脉冲宽度为x(t),则脉冲宽度调制波可以表示为:

PWM

  式中:假设脉冲中心在kTs处,T0为未调制宽度,m为调制指数;Tk为第k个矩形脉冲的宽度。可以看出,脉冲宽度调制信号由x(t)加上一个直流成分以及相位调制波构成。当T0《Ts时,相位调制部分引起的信号交叠可以忽略,所以脉冲宽度调制信号可以直接通过滤波器进行解调,从而实现PWM滤波D/A的输出。

  电路设计

PWM
PWM滤波D/A转换器框图

  根据前面分析可以设计出PWM滤波的信号处理方框图,由单片机输出PWM波,通过整形隔离,然后通过有源滤波器及驱动放大得到模拟信号的输出。

  针对控制芯片输出的是0~5V的PWM信号,而一般交流伺服电机速度闭环控制需要外部提供(±10)V的模拟信号,所以在控制芯片和交流伺服控制卡之间要加一级D/A转换电路,其功能就是把0~5V的PWM信号变为(-10)~(+10)V的模拟信号。

  电路中主要器件采用的是LM358,其内部包括2个独立的、高增益、内部频率补偿的双运算放大器,适合于电源电压范围很宽的单电源使用,也适用于双电源工作模式,它的使用范围包括传感放大器、直流增益模块和其他所有可用单电源供电的使用运算放大器的场合。设计中采用的是LM358双电源供电模式,使整个电路得以实现正负电压的输出。电路总体上可以分为4个部分,分别为隔离电路、三阶滤波电路、偏置电路和放大电路。为了确定关键电阻和电容的值以及更好的分析电路,文中计算出各电路的传递函数,在计算传递函数的时候,先不考虑各调零电阻和调增益的电阻,并且认为线性集成元件为理想状态,分别如下。

  1、隔离电路

PWM

  隔离电路如图所示。由高速光藕隔离芯片6N137实现,将实际控制芯片输出的PWM信号转换为理想的0~5V的PWM信号,隔离的目的为了防止外围电路对单片机信号的干扰。

  2、滤波电路

PWM

  三阶滤波电路由一个二阶有源低通滤波器和一个阻容滤波器组成。如图所示。

  主要器件是运放芯片LM358(图中U2A)和电阻R3、R6、R7、R8、R9以及电容C2、C3、C5。电路中的二阶有源低通滤波器采用的是二阶压控电压源电路,其原理是一个由线性集成元件(LM358)构成的同相比例放大器,其他无源元件都接在线性集成元件(LM358)的同相输入端,同相放大器输出电压反馈到无源网络。整个滤波电路的功能是将PWM信号的谐波过滤出去,并将理想的0~5VPWM信号放大一倍,转换成0~10V的模拟信号。

  其传递函数如下:

PWM

  式中:Af=1+R8/R7,a0=1a1=R6C2+R3C2+R3C3(1-Af)+R9C5,

  a2=R3R6C2C3+R6R9C2C5+R3R9C2C5+R3R9C3C5(1-Af)+R9C5,a3=R3R6R9C2C3C5

  本系统采用常用的二阶工程最佳参数作为设计系统的依据,选择阻尼系数ξ=1/√2,此时系统的幅频特性没有峰值出现,并且其截止频率就是它的固有频率fc=f0。实践证明,本系统在信号频率为21kHz左右时,滤波效果最佳。

  在本系统中取增益Af=2。求解得到:R3=22kΩ,R7=24kΩ,R8=24kΩ,R6=7.5kΩ,R9=100Ω,C2=15nF,C3=10nF,C5=10nF。

  3、偏置电路

PWM

  偏置电路如图所示,由运放芯片LM358(图中U2B)和电阻R11、R12、R14、R15组成,其原理是一个反相加法器,将0~10V模拟信号和基准电压源提供的-5V电压相加后,实现-5~+5V模拟信号的输出

  其传递函数如下:

PWM

  所以取R15=R12=R11=10kΩ。

  4、放大电路

PWM

  放大电路由U34和R16、R17、R18组成,其原理是一个反相比例放大器,把输入的-5~+5V的模拟信号放大为-10~+10V的模拟信号。

  放大电路中,要把在一级运放产生的系统相位滞后180°校正过来,并且放大2倍。所以仍采用反相比例放大器。在电路中U2、U3的关系为

PWM

  所以取R16=10kΩ,R17本来应该选择20kΩ的电阻,但是由于在实际中反馈端还得加一个可变电阻,所以选择R17=15kΩ。

  在实际调试电路的过程中,应该循序渐进一步步的调试,首先把PWM的占空比调整到0,在理想状态下,第2部分电路和第3部分电路应该分别输出为0和-5V,但是由于运算放大器的零偏、温漂和非线性以及外界的一些因素,这两部分电路输出不可能恰好是0和-5V,所以在U2A的放大器的基础上增加一个调零电阻R19和一个调增益电阻R20,在U2B的反相加法器的基础上增加一个调零电阻R21。调节调零电阻R19,使第2部分电路输出为0V,然后调整R21使第3部分输出为-5V。增加PWM的占空比到100%分别调整增益电阻R20、R22使得第2部分电路和第4部分电路的输出均为10V。

  总结

  本文详细介绍了基于LM358芯片的PWM滤波实现数模转换的电路,该电路具有良好稳定性,实现了正负模拟信号的输出,为交流伺服电机速度闭环控制提供了可靠的外部模拟信号。节省了大量D/A转换器芯片,降低了电子设备的成本,减少了体积。该电路已应用于实际工程,并取得了良好的预期结果,且设计方案简单易行,性价比高,只要适当改变电路部分电阻、电容的值,就可实现对不同基频信号滤波的功能,且达到最佳效果,此外,该电路也为模拟式速度闭环控制器提供了一个很好的外部电路参考依据。


打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分