深度解析硅碳复合材料的包覆结构之核壳型

电子说

1.2w人已加入

描述

碳质负极材料在充放电过程中体积变化较小,具有较好的循环稳定性能,而且碳质负极材料本身是离子与电子的混合导体;另外,硅与碳化学性质相近,二者能紧密结合,因此碳常用作与硅复合的首选基质。

随着时代的需求飞速发展,锂离子电池的能量密度以每年7%~10%的速率提升。2016年,我国发布了动力电池能量密度硬性指标,根据《节能与新能源汽车技术路线图》,2020年纯电动汽车动力电池的能量密度目标为350W·h/kg。

为满足新一代能源需求,开发新型锂电负极技术迫在眉睫。

硅在常温下可与锂合金化,生成Li15Si4相,理论比容量高达3572mA·h/g,远高于商业化石墨理论比容量(372mA·h/g),在地壳元素中储量丰富(26.4%,第2位),成本低、环境友好,因而硅负极材料一直备受科研人员关注,是最具潜力的下一代锂离子电池负极材料之一。

然而,硅在充放电过程中存在严重的体积膨胀(~300%),巨大的体积效应及较低的电导率限制了硅负极技术的商业化应用。为克服这些缺陷,研究者进行了大量的尝试,采用复合化技术,利用“缓冲骨架”补偿材料膨胀。

碳质负极材料在充放电过程中体积变化较小,具有较好的循环稳定性能,而且碳质负极材料本身是离子与电子的混合导体;另外,硅与碳化学性质相近,二者能紧密结合,因此碳常用作与硅复合的首选基质。

在Si/C复合体系中,Si颗粒作为活性物质,提供储锂容量;C既能缓冲充放电过程中硅负极的体积变化,又能改善Si质材料的导电性,还能避免Si颗粒在充放电循环中发生团聚。因此Si/C复合材料综合了二者的优点,表现出高比容量和较长循环寿命,有望代替石墨成为新一代锂离子电池负极材料。

从硅碳复合材料的结构出发,可将目前研究的硅碳复合材料分为包覆结构和嵌入结构。其中,包覆结构是在活性物质硅表面包覆碳层,缓解硅的体积效应,增强其导电性。根据包覆结构和硅颗粒形貌,包覆结构可分为核壳型、蛋黄-壳型以及多孔型。

核壳型

核壳型硅/碳复合材料是以硅颗粒为核,在核外表面均匀包覆一层碳层。碳层的存在不仅有利于增加硅的电导率,缓冲硅在脱嵌锂过程中的部分体积效应,还可以最大限度降低硅表面与电解液的直接接触,进而缓解电解液分解,使整个电极的循环性能得到提高。

Zhang等采用乳液聚合法在硅纳米颗粒表面包覆聚丙烯腈(PAN),经800℃热处理得到硅碳核壳结构复合材料(Si@C)。无定形碳层抑制了充放电过程中硅颗粒的团聚,Si@C在循环20次后容量维持在初始容量的50%左右。相比之下,硅纳米颗粒在循环20次后容量衰减严重。

Hwa等以聚乙烯醇(PVA)为碳源,采用惰性气氛下高温热解法对硅纳米颗粒进行碳包覆,得到碳壳层厚度为5~10nm厚的硅碳复合材料。采用硅纳米颗粒可以降低硅的绝对体积效应,减弱材料内部应力,碳包覆则进一步缓冲了硅内核的膨胀,该复合材料在100mA/g电流下循环50次后比容量仍可达1800mA·h/g,展现出优异的循环稳定性,而纯纳米Si和碳包覆微米硅(4μm)容量则衰减至不足200mA·h/g。

Xu等通过高温热解聚偏氟乙烯(PVDF)得到核壳型硅碳复合材料,其碳层厚度为20~30nm;该硅碳复合材料电极在0.02~1.5V电压范围内,50mA/g电流条件下的首次可逆比容量为1328.8mA·h/g,循环30次后容量保持在1290mA·h/g,容量保持率达97%。核壳型硅/碳复合材料中,不同热解碳源材料的选择对复合体系中硅-碳嵌锂基质界面的影响也不尽相同。

Liu等对比分析了以聚环氧乙烯(PEO)、聚氯乙烯(PVC)、聚乙烯(PE)、氯化聚乙烯(CPE)和PVDF为热解碳源的硅基核壳型负极材料,发现:由于含氟材料对硅的刻蚀作用,部分F可嵌入到Si—Si键中,有效地强化了热解碳与硅内核的界面兼容性,相应的Si-PVDF基活性材料也展现出更为优异的循环稳定。

因此,当碳源有机前驱物中含有F或Cl元素时,有利于获得更稳定的硅碳界面,使材料的电化学性能更为优异。

总之,通过对硅材料进行碳包覆,构建核壳结构,有助于改善材料的循环稳定性。然而,当硅碳核壳结构中的热解碳无空隙地包覆在硅颗粒表面时,由于硅核锂化过程的体积效应太大,会导致整个核壳颗粒膨胀,甚至导致表面碳层发生破裂,复合材料结构坍塌,循环稳定性迅速下降。为解决这一问题,研究者从强化壳层机械性能方面入手,设计出了双壳层结构。

充放电

Tao等通过在硅纳米颗粒表面包覆SiO2和热解碳,制备出具有双壳层结构的复合材料(Si@SiO2@C),见图A。与单壳层Si@C相比,Si@SiO2@C具有更高的容量保持率,在0.01~5V电压范围内循环100次后仍具有785mA·h/g的可逆容量。

研究表明,中间层SiO2作为缓冲相,可进一步减小循环过程产生的膨胀应力;同时,SiO2层还可与扩散的Li+发生不可逆反应,生成Si和Li4SiO4合金,进一步保证了材料的可逆容量。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分