60v转220v逆变器的电路制作(六款逆变器电路设计原理图详解)

电源设计应用

418人已加入

描述

逆变器由逆变电路、逻辑控制电路、滤波电路三大部分组成,主要包括输入接口、电压启动回路、MOS开关管、PWM控制器、直流变换回路、反馈回路、LC振荡及输出回路、负载等部分。控制电路控制整个系统的运行,逆变电路完成由直流电转换为交流电的功能,滤波电路用于滤除不需要的信号,逆变器的工作过程就是这样子的了。其中逆变电路的工作还可以细化为:首先,振荡电路将直流电转换为交流电;其次,线圈升压将不规则交流电变为方波交流电;最后,整流使得交流电经由方波变为正弦波交流电。

逆变电路

逆变器的主要特点有:

1、转换效率高、启动快;

2、安全性能好:产品具备短路、过载、过/欠电压、超温5种保护功能;

3、物理性能良好:产品采用全铝质外壳,散热性能好,表面硬氧化处理,耐摩擦性能好,并可抗一定外力的挤压或碰击;

4、带负载适应性与稳定性强

逆变器电路(一)

变压器可选用一个100W机床控制变压器,将变压器铁芯拆开,再将次级线圈拆下来,并记录匝数,以便于计算每伏圈数。然后用φ1.35mm的漆包线重新绕次级线圈,先绕一个22V的主线圈,在中间抽头,再用φ0.47的漆包线绕两个4V的反馈线圈,线圈的层间用较厚的牛皮纸绝缘。线圈绕好后插上铁芯,将两个4V次级分别和主线圈连在一起,注意头尾的别接反了。可通电测电压,如果4V线圈和主线圈连接后电压增加说明连接正确,反之就是错的,可换一下接头就可以了。

逆变电路

与4V线圈串联的两个电阻R2、R3可用电阻丝制作,可根据输出功率大小选择电阻的大小,一般为几欧姆,输出功率大时,电阻越小,偏流电阻用1W300Ω的电阻,不接这个电阻也能工作,但由于管子的参数不一致有时不起振,最好接一个。三极管的选择:每边用三只3DD15并联,共用六只管子,电路连接好后检查无错误,就可以通电调整了,接上蓄电池,找一个100W的白炽灯做负载,打开开关,灯泡应该能正常发光,如果不能正常发光,可减小基极的电阻,直到能正常发光为止,再接上彩电看能否正常启动,不能正常启动也是减小基极的电阻,调整完毕后就可以正常使用了。

逆变器电路(二)

只用4个元件的逆变器,制作简单,用于普通照明不错。R1、R2根据三极管和变压器的不同在1.2k~4.7k之间选用;三极管无特殊要求根据变压器的容量选择,容量大就用功率大点的;变压器可用普通控制变压器,只要有两组12V就行。选用500W机床控制变压器0v-12V-24V,三极管用的达林顿管MJ11032,电阻4.7k。(输出的是方波,不适合要求较高的场合)。

逆变电路

逆变器电路(三)

主要由MOS场效应管,普通电源变压器构成。其输出功率取决于MOS场效应管和电源变压器的功率,免除了烦琐的变压器绕制,适合电子爱好者业余制作中采用。

电路图

逆变电路

方波信号发生器

逆变电路

这里采用六反相器CD4069构成方波信号发生器。电路中R1是补偿电阻,用于改善由于电源电压的变化而引起的振荡频率不稳。电路的振荡是通过电容C1充放电完成的。其振荡频率为f=1/2.2RC.图示电路的最大频率为:fmax=1/2.2×3.3×103×2.2×10-6=62.6Hz;最小频率fmin=1/2.2×4.3×103×2.2×10-6=48.0Hz.由于元件的误差,实际值会略有差异。其它多余的反相器,输入端接地避免影响其它电路。

场效应管驱动电路

逆变电路

由于方波信号发生器输出的振荡信号电压最大振幅为0~5V,为充分驱动电源开关电路,这里用TR1、TR2将振荡信号电压放大至0~12V.如图所示。

MOS场效应管电源开关电路

下面简述一下用C-MOS场效应管(增强型MOS场效应管)组成的应用电路的工作过程。电路将一个增强型P沟道MOS场效应管和一个增强型N沟道MOS场效应管组合在一起使用。当输入端为低电平时,P沟道MOS场效应管导通,输出端与电源正极接通。当输入端为高电平时,N沟道MOS场效应管导通,输出端与电源地接通。

逆变电路

在该电路中,P沟道MOS场效应管和N沟道MOS场效应管总是在相反的状态下工作,其相位输入端和输出端相反。通过这种工作方式我们可以获得较大的电流输出。同时由于漏电流的影响,使得栅压在还没有到0V,通常在栅极电压小于1到2V时,MOS场效应管既被关断。不同场效应管其关断电压略有不同。也正因为如此,使得该电路不会因为两管同时导通而造成电源短路。

由以上分析我们可以画出原理图中MOS场效应管电路部分的工作过程

逆变电路

逆变器电路(四)

这是一种性能优良的家用逆变电源电路图,材料易取,输出功率150W.本电路设计频率为300Hz左右,目的是缩小逆变变压器的体积、重量。输出波形方波。这款逆变电源可以用在停电时家庭照明,电子镇流器的日光灯,开关电源的家用电器等其他方面。

逆变电路

电容器C1、C2用涤纶电容,三极管BG1-BG5可以用9013:40V0.1A0.5W;BG6-BG7可以用场效应管IRF150:100V40A150W0.055欧姆。先不接功率管,测A点、B点对地的电压,调整R1或R2使A、B两个点的电压要相同,这样才能输出的方波对称,静态电流也最少。

安装时要注意下列事项:BG6、BG7的焊接,必须用接地良好的电烙铁或切断电源后再焊接。大电流要用直径2.5MM以上的粗导线连接,并且连线尽量短,电瓶电压12V、容量12AH以上。功率管要加适当的散热片,例如用100*100*3MM铝板散热。如果你要增加功率,增加同型号的功率管并联使用,相应地增加变压器的功率。

逆变器电路(五)

本逆变器输入端为汽车蓄电池(+12V,4.5Ah),输出端为工频方波电压(50Hz,220V)。其系统主电路和控制电路框图如图1所示,采用了典型的二级变换,即DC/DC变换和DC/AC逆变。12V直流电压通过推挽式变换逆变为高频方波,经高频升压变压器升压,再整流滤波得到一个稳定的约320V直流电压;然后再由桥式变换以方波逆变的方式,将稳定的直流电压逆变成有效值稍大于220V的方波电压,以驱动负载。为保证系统的可靠运行,分别采集了DC高压侧电压信号、电流信号及蓄电池电压信号,送入SG3525A,通过调整驱动脉冲的占空比或关断脉冲来实现电压调节、过流保护及欠压保护等功能。

逆变电路

图  系统主电路和控制电路框图

主控芯片SG3525A

逆变电路

振荡频率的确定:振荡频率由三个外部元件RT、CT和RD设置,分别接在6、5、7引脚上。振荡频率为fOSC=1/CT(0.7RT+3RD),其中,0.7RTCT为定时电容充电时间,3RDCT为定时电容放电时间。为了使分频分相电路取得50Hz振荡频率,本设计设定振荡频率为51.2kHz,取CT=2000pF,RT=10kΩ,RD=922Ω。

输出脉宽的调整:PWM脉冲宽度由引脚9和引脚8中电平较低的一端控制。芯片内部的误差放大器U1将电压反馈信号与基准电压信号偏差放大后送入比较器U2的反向输入端,比较器正向输入端的输入则来自电容器CT上的锯齿波,两者做比较后输出方波脉冲来控制SG3525A内部输出功放管的占空比。本设计中将8引脚经电容接地,9引脚接DC/DC高压直流电压的反馈电压,由此调整输出直流电压的稳定。

逆变电路

图  输出直流高压调节原理图

图中,U1为SG3525A中的误差放大器,1、2、9分别为芯片管脚,R1~R7、C1、C2均为外接电阻电容。SG3525A的16引脚输出5V参考电压。电阻R3、R4及U1构成反比例运算器,R4/R3为其静态放大倍数,其值越大控制精度越高。但放大倍数太大将引起振荡,因此引入C1和R5使误差放大器成为不完全比例积分控制器,此时静态误差放大倍数不变,动态误差放大倍数减小,既不影响控制精度,又避免过冲引起振荡。

分频分相电路

逆变电路

保护电路

输入欠压保护

逆变电路

D1为蓄电池极性反接保护。SG3525A的引脚16输出参考电压5V,取R3=R4=10kΩ。在正常情况下,U1的反相输入端电压大于正向输入端电压,U1输出低电平,二极管D1、D2截止。当蓄电池电压低于10V时,比较器U1开始工作,输出由低电平变为高电平,D2、D3导通,并把同相输入端电位提升为高电平,使得U1一直稳定输出高电平,向SG3525A的引脚10输出关断信号。

输出电流过载保护

逆变电路

运放U2及外围电阻构成反比例放大器,运放U3及外围电路构成比较器。图1中的R3为取样电阻,取2.2Ω,2W。当负载电流增大时,该电阻的压降△U增大。运放U3正向输入端输入电压为:

U+=(1+R2/R1)×(R3/R4)×△U

合理的调整R1、R2、R3、R4的取值,使得当负载电流超过1.5A后,U3的正向输入端电位高于反向输入端,输出高电位,二极管D2、D3导通,并把同相输入端电位提升为高电平,使得U1一直稳定输出高电平,向SG3525A的10引脚输出关断信号。

逆变器电路(六)

CD4047是一种低功耗的CMOS非稳态/单稳态多谐振荡器IC。在这里,它是连接生产0.01S180度相IC的引脚10和11两个脉冲序列作为一个非稳态多谐振荡器。引脚10连接到Q1和11脚的大门是连接到Q2的栅极。电阻R3和R4防止装载各自的MOSFET的IC。当第10脚是高第一季度进行电流流通过的上半部分占输出交流电压的正半的变压器的初级。当11脚高第二季度进行电流流通过在相反方向的变压器初级的下半部的,它的输出交流电压的负半帐户。

逆变电路

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分