晶体管发明的重要性_晶体管的作用_晶体管工作原理介绍

电子常识

2583人已加入

描述

  晶体管简介

  晶体管,英文名称为transistor,泛指一切以半导体材料为基础的单一元件,如二极管、三极管、场效应管等等。晶体管具有整流、检波、放大、稳压、开关等多种功能,具有响应速度快、精度高等特点,是规范化操作手机、平板等现代电子电路的基本构建模块,目前已有着广泛的应用。

  晶体管的分类

  晶体管泛指所有半导体器件,包含N多种类,因此其也具有多种不同的分类方式。晶体管根据使用材料的不同可分为硅材料晶体管和锗材料晶体管;根据极性的不同可分为NPN型晶体管和PNP型晶体管;根据结构和制造工艺的不同可分为扩散型晶体管、合金型晶体管和平面型晶体管;其还可根据电流容量的不同、工作频率的不同、封装结构的不同等分类方式分为不同的种类。但晶体管多指晶体三极管,主要分为双极性晶体管(BJT)和场效应晶体管(FET),接下来我们就以BJT和FET为例来讲述晶体管的工作原理。

  场效应晶体管

  场效应晶体管(fieldeffecttransistor)利用场效应原理工作的晶体管,英文简称FET。场效应晶体管又包含两种主要类型:结型场效应管(JunctionFET,缩写为JFET)和金属-氧化物半导体场效应管(Metal-OxideSemiconductorFET,缩写为MOS-FET)。与BJT不同的是,FET只由一种载流子(多数载流子)参与导电,因此也称为单极型晶体管。它属于电压控制型半导体器件,具有输入电阻高、噪声小、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽等优点。

  场效应就是改变外加垂直于半导体表面上电场的方向或大小,以控制半导体导电层(沟道)中多数载流子的密度或类型。它是由电压调制沟道中的电流,其工作电流是由半导体中的多数载流子输运。这类只有一种极性载流子参加导电的晶体管又称单极型晶体管。与双极型晶体管相比,场效应晶体管具有输入阻抗高、噪声小、极限频率高、功耗小,制造工艺简单、温度特性好等特点,广泛应用于各种放大电路、数字电路和微波电路等。以硅材料为基础的金属0-氧化物-半导体场效应管(MOSFET)和以砷化镓材料为基础的肖特基势垒栅场效应管(MESFET)是两种最重要的场效应晶体管,分别为MOS大规模集成电路和MES超高速集成电路的基础器件。

晶体管

  晶体管的重要性及作用

  晶体管(transistor)是一种固体半导体器件,可以用于检波、整流、放大、开关、稳压、信号调制和许多其它功能。晶体管作为一种可变开关,基于输入的电压,控制流出的电流,因此晶体管可做为电流的开关,和一般机械开关(如Relay、switch)不同处在于晶体管是利用电讯号来控制,而且开关速度可以非常之快,在实验室中的切换速度可达100GHz以上。

  半导体三极管,是内部含有两个PN结,外部通常为三个引出电极的半导体器件。它对电信号有放大和开关等作用,应用十分广泛。输入级和输出级都采用晶体管的逻辑电路,叫做晶体管-晶体管逻辑电路,书刊和实用中都简称为TTL电路,它属于半导体集成电路的一种,其中用得最普遍的是TTL与非门。TTL与非门是将若干个晶体管和电阻元件组成的电路系统集中制造在一块很小的硅片上,封装成一个独立的元件。半导体三极管[fontcolor=#000000]是电路中[/font]应用最广泛的器件之一,在电路中用“V”或“VT”(旧文字符号为“Q”、“GB”等)表示。

  半导体三极管主要分为两大类:双极性晶体管(BJT)和场效应晶体管(FET)。晶体管有三个极;双极性晶体管的三个极,分别由N型跟P型组成发射极(Emitter)、基极(Base)和集电极(Collector);场效应晶体管的三个极,分别是源极(Source)、栅极(Gate)和漏极(Drain)。晶体管因为有三种极性,所以也有三种的使用方式,分别是发射极接地(又称共射放大、CE组态)、基极接地(又称路最常用的用途应该是属于讯号放大这一方面,其次是阻抗匹配、讯号转换……等,晶体管在电路中是个很重要的组件,许多精密的组件主要都是由晶体管制成的。

  晶体管被认为是现代历史中最伟大的发明之一,在重要性方面可以与印刷术,汽车和电话等发明相提并论。晶体管实际上是所有现代电器的关键活动(active)元件。晶体管在当今社会的重要性,主要是因为晶体管可以使用高度自动化的过程,进行大规模生产的能力,因而可以不可思议地达到极低的单位成本。

  虽然数以百万计的单体晶体管还在使用,但是绝大多数的晶体管是和电阻、电容一起被装配在微芯片(芯片)上以制造完整的电路。模拟的或数字的或者这两者被集成在同一块芯片上。设计和开发一个复杂芯片的成本是相当高的,但是当分摊到通常百万个生产单位上,每个芯片的价格就是最小的。一个逻辑门包含20个晶体管,而2005年一个高级的微处理器使用的晶体管数量达2.89亿个。

  晶体管的低成本、灵活性和可靠性使得其成为非机械任务的通用器件,例如数字计算。在控制电器和机械方面,晶体管电路也正在取代电机设备,因为它通常是更便宜、更有效地,仅仅使用标准集成电路并编写计算机程序来完成同样的机械任务,使用电子控制,而不是设计一个等效的机械控制。

  因为晶体管的低成本和后来的电子计算机、数字化信息的浪潮来到了。由于计算机提供快速的查找、分类和处理数字信息的能力,在信息数字化方面投入了越来越多的精力。今天的许多媒体是通过电子形式发布的,最终通过计算机转化和呈现为模拟形式。受到数字化革命影响的领域包括电视、广播和报纸。

  晶体管工作原理

  晶体管内部的工作原理很简单,如图1.4所示,对基极PS2707-1与发射极之间流过的电流进行不断地监视,并控制集电极发射极间电流源使基极一发射极间电流的数十至数百倍(依晶体管的种类而异)的电流流在集电极与发射极之间。就是说,晶体管是用基极电流来控制集电极一发射极电流的器件。

晶体管

  从外部来看,因为在基极输入的电流被变大而出现在集电极、发射极端上,所以可看成将输入信号进行了放大。

  在实际的晶体管虽然有数千个品种,然而只是在最大规格、电特性和外形等方面有所不同。无论哪种晶体管都只进行图1.4那样的单纯工作。

  那么,在电路内接入晶体管使它进行放大工作(即使晶体管工作),如何做才好呢?

  由图1.4可知,因为晶体管是将基极与发射极间流动的电流检测出来,进而控制集电极一发射极间电流的器件,所以只要使电流在基极与发射极之间流动,它就工作。也就是说,设计一种外部电路使基极一发射极间电流流动就可以了。

晶体管

  晶体管可以这样理解,如图1.5所示,在晶体,管基极一发射间加入了二极管。当晶体管进行工作(基极一发射极间电流流动)时,基极一发射极间的压降与二极管的正向压降相同,为0.6~0.7V。

  晶体管检测方法

  1.普通达林顿管的检测

  普通达林顿管内部由两只或多只晶体管的集电极连接在一起复合而成,其基极b与发射极e之间包含多个发射结。检测时可使用万用表的R×1kΩ或R×10kΩ档来测量。

  测量达林顿管各电极之间的正、反向电阻值。正常时,集电极c与基极b之间的正向电阻值(测NPN管时,黑表笔接基极b;测PNP管时,黑表笔接集电极c)与普通硅晶体管集电结的正向电阻值相近,为3~10kΩ,反向电阻值为无穷大。而发射极e与基极b之间的正向电阻值(测NPN管时,黑表笔接基极b;测PNP管时,黑表笔接发射极e)是集电极c与基极b之间正向电阻值的2~3倍,反向电阻值为无穷大。集电极c与发射极e之间的正、反向电阻值均应接近无穷大。若测得达林顿管的c、e极间的正、反向电阻值或b、e极、b、c极之间的正、反向电阻值均接近0,则说明该管已击穿损坏。若测得达林顿管的b、e极b、c极之间的正、反向电阻值为无穷大,则说明该管已开路损坏。

  2.大功率达林顿管的检测

  大功率达林顿在普通达林顿管的基础上增加了由续流二极管和泄放电阻组成的保护电路,在测量时应注意这些元器件对测量数据的影响。

  用万用表R×1kΩ或R×10kΩ档,测量达林顿管集电结(集电极c与基极b之间)的正、反向电阻值。正常时,正向电阻值(NPN管的基极接黑表笔时)应较小,为1~10kΩ,反向电阻值应接近无穷大。若测得集电结的正、反向电阻值均很小或均为无穷大,则说明该管已击穿短路或开路损坏。

  用万用表R×100Ω档,测量达林顿管发射极e与基极b之间的正、反向电阻值,正常值均为几百欧姆至几千欧姆(具体数据根据b、e极之间两只电阻器的阻值不同而有所差异。例如:BU932R、MJ10025等型号大功率达林顿管b、e极之间的正、反向电阻值均为600Ω左右),若测得阻值为0或为无穷大,则说明被测管已损坏。

  用万用表R×lkΩ或R×10kΩ档,测量达林顿管发射极e与集电极c之间的正、反向电阻值。正常时,正向电阻值(测NPN管时,黑表笔接发射极e,红表笔接集电极c;测PNP管时,黑表笔接集电极c,红表笔接发射极e)应为5~15kΩ(BU932R为7kΩ),反向电阻值应为无穷大,否则是该管的c、e极(或二极管)击穿或开路损坏。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分