光电转化效率是什么_光电转化效率概念

电子常识

2592人已加入

描述

  什么是光电转换

  光电转换是通过光伏效应把太阳辐射能直接转换成电能的过程。这一过程的原理是光子将能量传递给电子使其运动从而形成电流。这一过程有两种解决途径,最常见的一种是使用以硅为主要材料的固体装置,另一种则是使用光敏染料分子来捕获光子的能量。染料分子吸收光子能量后将使半导体中的带负电的电子和带正电的空穴分离。

  在众多太阳光电池中较普遍且较实用的有单晶硅太阳光电池、多晶硅太阳光电池及非晶硅太阳光电池等三种太阳光电池主要功能在将光能转换成电能,这个现象称之为光伏效应(photovoltaiceffect)。光伏效应在19世纪即被发现,早期用来制造硒光电池,直到晶体管发明后半导体特性及相关技术才逐渐成熟,使太阳光电池的制造变为可能。

  光电转换原理

  概述:

  被摄景物通过摄像机的光学系统在光电靶上成像,由于光像各点亮度不同,因而使靶面各单元受光照的强度不同,导致靶面各单元的电阻值不同。与较亮像素对应的靶单元阻值较小,与较暗像素对应的靶单元阻值较大,这样一幅图像上各像素的不同亮度就表现为靶面上各单元的不同电阻值,原来按照明暗分布的“光像”就变成了相应的“电像

  从电子枪阴极发出的电子,在电子枪电场作用下高速射向靶面,并在偏转磁场作用下按照扫描规律扫过靶面上的各个单元。当电子束接触到靶面某个单元时,使阴极、光电靶、负载电阻RL及电源E构成一个回路。在负载RL中有电流流过,其电流大小取决于光电靶在该单元的电阻值大小。光照强处对应阻值较小,流过负载RL的电流就较大,因而RL两端产生的压降也就较大。负载电阻RL上形成电压就是摄像管输出的图像信号。

  光电转换过程(图像的摄取过程):被摄景物通过摄像机的光学镜头在光电靶上成像,被电子束将这幅图像分解为像素,同时把各个像素的亮度转变为在负载电阻RL上大小不同的电压降,从而形成摄像管输出信号。

光电转换

  光电效应:

  当电子从外界获得能量时将会跳到较高的能阶,获得的能量越多跳的能阶也越高,电子处在较高的能阶时并不稳定,很快就会把获得的能量释放回到原来的能阶。如果电子获得的能量够高就摆脱原子核的束缚成为自由电子,电子空出来的位置则称为空穴。自由电子可能会因为摩擦或碰撞等因素损失能量,最后受到空穴的吸引而复合。例如,硅的最外层电子要成为自由电子需要吸收1.1ev的能量,当硅最外层电子吸收到的光能量超过1.1ev时将会产生自由电子及空穴,称之为光生电子空穴对(light-generatedelectron-holepairs)。电子空穴对的数目越多导电的效果也越好,因为光使得导电效果变好的现象称之为光导效应(photoconductiveeffect)。

  自由电子与空穴的多寡对电气特性有很大的影响,越多的自由电子与空穴可以使导电性增加,同时也可以使输出电流增加,因此可以推测阳光越强时生成的自由电子与空穴越多,则输出电流也越大。然而如果只是单纯的产生自由电子与空穴,将会因为摩擦及碰撞等因素失去能量,最后自由电子会与空穴复合而无法利用。为更有效的利用由电子与空穴来产生电流,因此必须加入电场使自由电子与空穴分离进而产生电流。产生电场的方式很多如PN接面、金属半导体接面等,其中最常用的方式为PN接面。

  提高自由电子浓度常用的方法是在硅中加入少量的五价原子,五价原子的四个价电子与硅键结后剩下一个价电子,使剩下的价电子游离只需要0.05ev,比原来的1.1ev小很多,在室温超过200度k时即可使所有杂质产生自由电子,同样在硅中加入少量的三价原子可以提高空穴浓度。在硅中加入五价原子后称之为N型半导体,加入三价原子后称之为P型半导体。N型半导体及P型半导体虽然带有自由电子或空穴但本身仍然保持电中性,如果N型半导体及P型半导体内杂质浓度均匀分布则内部没有电场存在。若将N型半导体及P型半导体接和在一起,会因为两边自由电子与空穴的浓度不同产生扩散。N型半导体中自由电子浓度较高,因此自由电子由N型半体向P型半导体扩散,同样的空穴会由P型半导体向N型半导体扩散。扩散的结果使得接面附近的N型半导体失去电子得到空穴而带正电,P型半导体失去空穴得到电子而带负电。因为电荷密度不均因此在接面附近产生电场,如果有自由电子或空穴在电场内产生,则会因为受到电场的作用而移动,自由电子向N型半导体移动,而电洞向P型半导体移动,因此这个区域缺乏自由电子或空穴而称之为空乏区。当光照射在空乏区内将硅原子的电子激发产生光生电子与空穴对,电子与空穴对会因为电场作用而使电池内的电荷往两端集中,此时只要外加电路将两端连接即可利用电池内的电力,这即是所谓的光电效应,也是太阳光电池的转换原理。

光电转换

  光电转换材料

  是通过光生伏特效应将太阳能转换为电能的材料。主要用于制作太阳能电池。太阳是一个巨大的能源库,地球上一年中接收到的太阳能高达1.8×10(18次方)千瓦时。研究和发展光电转换材料的目的是为了利用太阳能。光电转换材料的工作原理是:将相同的材料或两种不同的半导体材料做成PN结电池结构,当太阳光照射到PN结电池结构材料表面时,通过PN结将太阳能转换为电能。太阳能电池对光电转换材料的要求是转换效率高、能制成大面积的器件,以便更好地吸收太阳光。已使用的光电转换材料以单晶硅、多晶硅和非晶硅为主。用单晶硅制作的太阳能电池,转换效率高达20%,但其成本高,主要用于空间技术。多晶硅薄片制成的太阳能电池,虽然光电转换效率不高(约10%),但价格低廉,已获得大量应用。此外,化合物半导体材料、非晶硅薄膜作为光电转换材料,也得到研究和应用。

  半导体光电器件是把光和电这两种物理量联系起来,使光和电互相转化的新型半导体器件。光电器件主要有:利用半导体光敏特性工作的光电导器件、利用半导体光伏打效应工作的光电池和半导体发光器件等。

  光电转化效率的概念

  单色光电转化效率,即入射单色光子-电子转化效率(monochromaticincidentphoton-to-electronconversionefficiency,用缩写IPCE表示),定义为单位时间内外电路中产生的电子数Ne与单位时间内的入射单色光子数Np之比。其数学表达式见公式:

  IPCE=1240Isc/(lPin)

  其中Isc、l和Pin所使用的单位分别为μAcm-2、nm和Wm-2。

  光电转化效率的电流产生的过程

  IPCE与光捕获效率(lightharvestingefficiency)LHE(l)、电子注入量子效率finj及注入电子在纳米晶膜与导电玻璃的后接触面(backcontact)上的收集效率fc三部分相关。见公式:

  IPCE(l)=LHE(l)*finj*fc=LHE(l)*f(l)

  其中finj′fc可以看作量子效率f(l)。由于0£LHE(l)£1,所以对于同一体系,IPCE(l)£f(l)。两者相比,IPCE(l)能更好地表示电池对太阳光的利用程度,因为f(l)只考虑了被吸收光的光电转化,而IPCE(l)既考虑了被吸收光的光电转化又考虑了光的吸收程度。譬如,若某电极的光捕获效率为1%,而实验测得量子效率f(l)为90%,但其IPCE(l)只有0.9%。作为太阳能电池,必须考虑所有入射光的利用,所以用IPCE(l)表示其光电转化效率更合理;作为LB膜或自组装膜敏化平板电极的研究主要用来筛选染料而不太注重光捕获效率,所以常用f(l)表示光电转化效果。在染料敏化太阳能电池中,IPCE(l)与入射光波长之间的关系曲线为光电流工作谱。

光电转换

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分