Android内存管理机制与分析工具

电子说

1.2w人已加入

描述

在 Android 系统中有个垃圾内存回收机制,在虚拟机层自动分配和释放内存,因此不需要在代码中分配和释放某一块内存,从应用层面上不容易出现内存泄漏和内存溢出等问题,但是需要内存管理。Android 系统在内存管理上有一个 Generational Heap Memory 模型,内存回收的大部分压力不需要应用层关心, Generational Heap Memory 有自己一套管理机制,当内存达到一个阈值时,系统会根据不同的规则自动释放系统认为可以释放的内存,也正是因为 Android 程序把内存控制的权力交给了 Generational Heap Memory,一旦出现内存泄漏和溢出方面的问题,排查错误将会成为一项异常艰难的工作。除此之外,部分 Android 应用开发人员在开发过程中并没有特别关注内存的合理使用,也没有在内存方面做太多的优化,当应用程序同时运行越来越多的任务,加上越来越复杂的业务需求时,完全依赖 Android 的内存管理机制就会导致一系列性能问题逐渐呈现,对应用的稳定性和性能带来不可忽视的影响,因此,解决内存问题和合理优化内存是非常有必要的。

Android内存管理机制

Android 应用都是在 Android 的虚拟机上运行,应用 程序的内存分配与垃圾回收都是由虚拟机完成的。在 Android 系统,虚拟机有两种运行模式:Dalvik 和 ART。

1、Java对象生命周期

一般Java对象在虚拟机上有7个运行阶段:

创建阶段->应用阶段->不可见阶段->不可达阶段->收集阶段->终结阶段->对象空间重新分配阶段

2、内存分配

在 Android 系统中,内存分配实际上是对堆的分配和释放。当一个 Android 程序启动,应用进程都是从一个叫做 Zygote 的进程衍生出来,系统启动 Zygote 进程后,为了启动一个新的应用程序进程,系统会衍生 Zygote 进程生成一个新的进程,然后在新的进程中加载并运行应用程序的代码。其中,大多数的 RAM pages 被用来分配给Framework 代码,同时促使 RAM 资源能够在应用所有进程之间共享。

但是为了整个系统的内存控制需要,Android 系统会为每一个应用程序都设置一个硬性的 Dalvik Heap Size 最大限制阈值,整个阈值在不同设备上会因为 RAM 大小不同而有所差异。如果应用占用内存空间已经接近整个阈值时,再尝试分配内存的话,就很容易引起内存溢出的错误。

3、内存回收机制

我们需要知道的是,在 Java 中内存被分为三个区域:Young Generation(年轻代)、Old Generation(年老代)、Permanent Generation(持久代)。最近分配的对象会存放在 Young Generation 区域。对象在某个时机触发 GC 回收垃圾,而没有回收的就根据不同规则,有可能被移动到 Old Generation,最后累积一定时间在移动到 Permanent Generation 区域。系统会根据内存中不同的内存数据类型分别执行不同的 GC 操作。GC 通过确定对象是否被活动对象引用来确定是否收集对象,进而动态回收无任何引用的对象占据的内存空间。但需要注意的是频繁的 GC 会增加应用的卡顿情况,影响应用的流畅性,因此需要尽量减少系统 GC 行为,以便提高应用的流畅度,减小卡顿发生的概率。

内存分析工具

做内存优化前,需要了解当前应用的内存使用现状,通过现状去分析哪些数据类型有问题,各种类型的分布情况如何,以及在发现问题后如何发现是哪些具体对象导致的,这就需要相关工具来帮助我们。

1、Memory Monitor

Memory Monitor 是一款使用非常简单的图形化工具,可以很好地监控系统或应用的内存使用情况,主要有以下功能:

显示可用和已用内存,并且以时间为维度实时反应内存分配和回收情况。

快速判断应用程序的运行缓慢是否由于过度的内存回收导致。

快速判断应用是否由于内存不足导致程序崩溃。

2、Heap Viewer

Heap Viewer 的主要功能是查看不同数据类型在内存中的使用情况,可以看到当前进程中的 Heap Size 的情况,分别有哪些类型的数据,以及各种类型数据占比情况。通过分析这些数据来找到大的内存对象,再进一步分析这些大对象,进而通过优化减少内存开销,也可以通过数据的变化发现内存泄漏。

3、Allocation Tracker

Memory Monitor 和 Heap Viewer 都可以很直观且实时地监控内存使用情况,还能发现内存问题,但发现内存问题后不能再进一步找到原因,或者发现一块异常内存,但不能区别是否正常,同时在发现问题后,也不能定位到具体的类和方法。这时就需要使用另一个内存分析工具 Allocation Tracker,进行更详细的分析, Allocation Tracker 可以分配跟踪记录应用程序的内存分配,并列出了它们的调用堆栈,可以查看所有对象内存分配的周期。

4、Memory Analyzer Tool(MAT)

MAT 是一个快速,功能丰富的 Java Heap 分析工具,通过分析 Java 进程的内存快照 HPROF 分析,从众多的对象中分析,快速计算出在内存中对象占用的大小,查看哪些对象不能被垃圾收集器回收,并可以通过视图直观地查看可能造成这种结果的对象。

常见内存泄漏场景

如果在内存泄漏发生后再去找原因并修复会增加开发的成本,最好在编写代码时就能够很好地考虑内存问题,写出更高质量的代码,这里列出一些常见的内存泄漏场景,在以后的开发过程中需要避免这类问题。

资源性对象未关闭。比如Cursor、File文件等,往往都用了一些缓冲,在不使用时,应该及时关闭它们。

注册对象未注销。比如事件注册后未注销,会导致观察者列表中维持着对象的引用。

类的静态变量持有大数据对象。

非静态内部类的静态实例。

Handler临时性内存泄漏。如果Handler是非静态的,容易导致 Activity 或 Service 不会被回收。

容器中的对象没清理造成的内存泄漏。

WebView。WebView 存在着内存泄漏的问题,在应用中只要使用一次 WebView,内存就不会被释放掉。

除此之外,内存泄漏可监控,常见的就是用LeakCanary 第三方库,这是一个检测内存泄漏的开源库,使用非常简单,可以在发生内存泄漏时告警,并且生成 leak tarce 分析泄漏位置,同时可以提供 Dump 文件进行分析。

优化内存空间

没有内存泄漏,并不意味着内存就不需要优化,在移动设备上,由于物理设备的存储空间有限,Android 系统对每个应用进程也都分配了有限的堆内存,因此使用最小内存对象或者资源可以减小内存开销,同时让GC 能更高效地回收不再需要使用的对象,让应用堆内存保持充足的可用内存,使应用更稳定高效地运行。

常见做法如下:

对象引用。强引用、软引用、弱引用、虚引用四种引用类型,根据业务需求合理使用不同,选择不同的引用类型。

减少不必要的内存开销。注意自动装箱,增加内存复用,比如有效利用系统自带的资源、视图复用、对象池、Bitmap对象的复用。

使用最优的数据类型。比如针对数据类容器结构,可以使用ArrayMap数据结构,避免使用枚举类型,使用缓存Lrucache等等。

图片内存优化。可以设置位图规格,根据采样因子做压缩,用一些图片缓存方式对图片进行管理等等。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分