如何研究锂离子电池的阻抗?

电子说

1.2w人已加入

描述

在对阻抗建模时,COMSOLMultiphysics软件会自动将这些方程转换为频域形式,并围绕给定的电压和电流将方程线性化。

电池在工作时通常会经历很多过程,而这些过程涉及了非常多的参数。如何深入探究电池内部的运行和反应过程?一种便捷的途径是分析电池的阻抗。借助“案例库”中的“锂离子电池阻抗”演示App,我们可以对特定锂离子电池设计中的阻抗进行分析。

阻抗谱:一种实验方法

电化学阻抗谱(EIS)是一种广泛应用于电分析领域的技术,其作用是研究电化学系统中的谐波响应。在电池中,它会在两个电极之间电势差的基础之上施加一个小的正弦振荡,并根据阻抗以频域分析得到的电流结果。通常情况下,该扰动应用于开路电压。

在电学分析中,阻抗是一个包含实部和虚部的复数。实部相当于与外加电压同相的电阻;虚部相当于与外加电压呈90°异相的电抗。阻抗的实部和虚部告诉了人们有关电池的动力学、质量传递属性及其电容特性的信息。通过测量一定频率范围内的阻抗,系统中各个物理场的相对影响都可以被表示为特征时间尺度的函数。

如何模拟锂离子电池中的阻抗

发生在锂离子电池内的多个过程展现出了瞬态响应,可以在频域中探测到。下图中的标准锂离子电池由两个多孔电极构成,并且两电极之间带有多孔隔膜,我们可以对以下过程进行解释:活性电极材料表面的电荷转移反应。

➤活性电极材料表面的电荷转移反应。

➤电解质中的质量传递(扩散和迁移)。

➤活性电极材料颗粒内的锂扩散。

➤活性电极材料、电导体和其他表面上双电层电荷的变化。

➤导电材料之间的接触阻抗。

锂离子电池内的过程与材料

在对阻抗建模时,COMSOLMultiphysics软件会自动将这些方程转换为频域形式,并围绕给定的电压和电流将方程线性化。线性化方法与阻抗数据的谐波解释一致,并且由于使电池电势受到很小的扰动,所以该方法是可行的。

如何理解阻抗数据?

奈奎斯特图是表征系统阻抗的常用方式,图中阻抗的负虚部分量与实部分量分别绘制在y轴和x轴上。单个多孔电极(见上图)的奈奎斯特图通常如下所示。

奈奎斯特图以及不同特性的贡献。

中-高频范围内的半圆形展示了电极内材料表面的双电层充电状况,以及各类不同电阻的贡献。

低频区域出现了一个“尾巴”。尾巴形状主要受电解质和活性电极材料内的扩散情况的影响。本质上讲,它是由扩散系数和电极材料的颗粒大小决定的。在奈奎斯特图中,最左侧点处的阻抗实部可用于测量电池内的离子导电率和电导率。

总而言之,阻抗提供了大量的信息,而模型可以有效地组织和整理这些信息。一种方法是反复调整模型参数,从而准确地找出影响阻抗的因素及对应的频率,如下图所示。

显示了多个参数变化的奈奎斯特图

锂离子电池阻抗仿真App

用于研究的电池单元设计由下列部件组成:

➤多孔阳极:NCA(LiNi0.08Co0.15Al0.05O2)活性材料、电子导体和粘合剂。

➤多孔阴极:LTO(Li4Ti5O12)活性材料、电子导体和粘合剂。

➤隔膜:Celgard2325。

➤电解质:含1.2MLiPF6的EC:EMC(重量比3:7)。

在电池特性栏中,可以反复修改电极和隔膜的厚度、集流体的面积和电极的初始充电状态;在实验数据栏中,可以导入任何想要研究的阻抗测量数据。

在参数估计栏中,选择要估算的控制参数。可用的参数包括交换电流密度、颗粒中电阻层的电阻率、NCA的双电层电容和正极上碳载体的双电层电容。

优化完电池设计后,用户界面如下所示:

锂离子电池阻抗App

双电层是否进行了实质性的充电?活性粒子上的膜阻是否产生了很大的阻抗?电荷转移反应有多快?上述问题都可以利用由参数创建的模型(例如系统的瞬态电池模型)来解答。然后,可以进一步比较不同的电池,或导入另一个(使用时间更长的)电池的阻抗数据。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分