对现有微带结构的抗金属标签天线进行小型化改进设计详解

工程师青青 发表于 2018-11-17 11:23:12 收藏 已收藏
赞(0) •  评论(0

对现有微带结构的抗金属标签天线进行小型化改进设计详解

工程师青青 发表于 2018-11-17 11:23:12

0 引言

射频识别(Radio Frequency Identification,RFID)[1]是一种非接触的近距离自动识别技术,其基本原理是利用射频信号或电磁场耦合的能量传输特性,实现对物体的自动识别。RFID技术具有抗干扰能力强、存储信息量大、非接触、使用寿命长、可多标签识别、响应速度快等特点。RFID系统已经被广泛应用在公共交通、人员身份识别、车辆管理、自动收费、门禁管理等领域。

无源RFID系统通常分为低频(LF)、高频(HF)和超高频(UHF)系统,由读写器、标签、天线3个基本要素构成,在设计RFID系统时,必须考虑RFID系统所处的背景环境。文献[2]-[4]分析了复杂环境下,无源UHF电子标签天线的读写性能,在不同环境下标签的读写性能会受到影响,尤其是当标签贴附于金属表面时,标签几乎不被读取。文献[5]分析了金属对标签天线的影响原因,并采用垫高型标签来克服金属的影响,利用金属对电磁波的反射来加强标签的读取性能,但是天线尺寸较大,天线性能不理想。文献[6]采用矩形微带贴片切角和电容耦合馈电技术来实现微带天线的圆极化、宽频带特性。

本文通过对端口封闭式小型微带天线[7]的研究,对辐射贴片加载短路片,并采用高性能的微波介质陶瓷[8]作为介质基片,在牺牲较少增益的前提下,可以对现有的抗金属天线[9]进行尺寸缩减,并获得良好的匹配性能。标签芯片采用的是EM4235型号的UHF-RFID标签芯片,该芯片在中心频率为920 MHz的阻抗为18-j178 Ω。

1 抗金属标签结构及实现

传统的矩形微带天线贴片与接地板之间的场具有以下特点:(1)电场只有Ex分量,磁场只有Hx和Hy分量,即微带天线辐射沿z轴方向的TM波;(2)内场不随z坐标变化;(3)四周边缘处电流无法向分量,即边缘处切向磁场为零,故空腔四周可视为磁壁。文献[7]通过将天线空腔的一个端口用铜箔封闭,如图1所示,介质上表面覆盖辐射贴片,辐射贴片长为L,宽为W。把xoz平面的左端口用铜箔封闭,这样就构成了一端口封闭的微带天线结构。

对现有微带结构的抗金属标签天线进行小型化改进设计详解

由于理想金属表面不存在电场的切向分量,从而使封闭端口所在的平面变成理想电壁。利用空腔理论对天线内场进行分析,矩形微带天线通常都工作于TM01模(或TM10模),可得到TMmn模的谐振频率为:

对现有微带结构的抗金属标签天线进行小型化改进设计详解

本文选用介电常数为22、厚度4 mm的微波介质陶瓷作为介质基板。作为现在通信技术中关键基础材料的微波介质陶瓷,主要应用于UHF、SHF(超高频)频段,具有以下优点:相对介电常数高,以便于器件小型化;品质因数Q值高或介质损耗tanδ小,保证优良的选频特性。

设计的抗金属天线由一端接地天线辐射面、接地短截线、两个短路片及接地平面构成。介质基板采用微波介质陶瓷,厚度为4 mm,相对介电常数为22,天线宽度W为20 mm,由式(3)计算得到辐射贴片长度L约为32 mm,天线各参数分布如图2所示。其中,L为辐射贴片整体长度,W为辐射贴片整体宽度,Wg为天线整体宽度,Li为插入式馈电微带线的长度,Wi为插入式馈电微带线的宽度,Ls为接地短截线的长度,Ws为接地短截线的宽度,L2为一端短路片长度。

对现有微带结构的抗金属标签天线进行小型化改进设计详解

对现有微带结构的抗金属标签天线进行小型化改进设计详解

2 天线模型理论及等效电路图

天线各参数在设计之前需要了解参数设计的指导原则和参数变化对天线性能影响,本文提出的天线模型可以用图3所示的传输线等效电路模型来表示。

对现有微带结构的抗金属标签天线进行小型化改进设计详解

天线的辐射面、接地短截线和两个接地片分别等效为一段微带传输线,馈电端位于传输线之间,天线的输入阻抗为这三段微带线的串联阻抗值,即:

对现有微带结构的抗金属标签天线进行小型化改进设计详解

由上式可知,短截线电阻值近似为零,电抗值随短截线的长度改变而改变,当0《Ls《0.25λ时,其电抗值为感性。

根据上述分析,抗金属天线的等效输入阻抗是辐射面阻抗、接地短截线阻抗和接地片阻抗的串联。Ls的变化将引起传输线电抗值变化。当0《Ls《0.25λ时,随Ls的增加,传输线的电抗值由零增加至无穷大,所以可以通过调节Ls的大小来调节天线输入阻抗的虚部,而其对实部的影响不大;对于天线输入阻抗实部的调节可以通过调节L2来实现。综上调整L2和Ls可以实现对天线输入阻抗实部和虚部的调控,方便完成天线与芯片的共轭匹配。

3 天线仿真及结果分析

本文使用高频电磁场仿真软HFSS13.0作为仿真工具。利用式(1)~式(9),并经过参数优化可以得到天线的最佳设计参数,如表1所示。

对现有微带结构的抗金属标签天线进行小型化改进设计详解

仿真参数的定义如下:Ls和L2是可变变量,中心频率为920 MHz,扫频范围为820 MHz~1 GHz,步长为5 MHz。金属环境的模拟采用200 mm×200 mm的金属板来代替,天线的端口阻抗设置为芯片阻抗的共轭,即Z=18+j178 Ω。通过调节Ls和L2,来实现天线输入阻抗与芯片的最佳共轭匹配。

使用HFSS仿真优化后的结果如图4所示,在920 MHz,S11最小值为-31 dB,此时天线的输入阻抗为8+j178 Ω,表明与天线端口阻抗匹配极好。在860 MHz~960 MHz的频段内,S11《-15 dB的相对带宽为11%,表明天线满足不同国家的频率要求。根据天线的方向图,通过式(10)[10]计算天线的读取距离:

对现有微带结构的抗金属标签天线进行小型化改进设计详解

4 结论

本文对现有微带结构的抗金属标签天线进行小型化改进设计,利用端口封闭式微带天线的结构原理,采用新型微波介质陶瓷作为介质基板,通过加载接地片,设计了一种32.5 mm×24 mm×4 mm小尺寸抗金属标签天线,满足了客户对小尺寸、低成本、抗金属标签的要求,同时在860~960 MHz 频段内,回波损耗S11《-15 dBm(相对带宽11%),满足宽频带要求。置于金属板上的增益约为-8 dBi,满足了大于1 m距离读取标签的要求。

收藏

相关话题
文章来源栏目
+关注

评论(0)

加载更多评论

参与评论

分享到

QQ空间 QQ好友 微博
取消