5A同步降压型转换器pcb布局和实施方案

发表于 2019-03-12 16:08:52 收藏 已收藏
赞(0) •  评论(0

5A同步降压型转换器pcb布局和实施方案

发表于 2019-03-12 16:08:52

在电路板上具有战略意义的位置灵活部署转换器的能力也很重要 —— 以大电流负载点(POL)模块为例,处于邻近负载的最佳位置可降低导通压降并改善负载瞬态性能。

请细看图2中外形微缩的降压型转换器的功率级布局。作为一个嵌入式POL模块实施方案,它采用了一个全陶瓷电容器设计、一个高效屏蔽式电感器、若干垂直堆叠的金属氧化物半导体场效应晶体管(MOSFET)、一个电压模式控制器以及一个具有2盎司覆铜的六层pcb。

图2:25A同步降压型转换器pcb布局和实施方案

本设计的主要原则是实现高功率密度和低材料清单(BOM)成本。它总共占用的pcb面积为2.2cm2(0.34in2),每单位面积产生的有效电流密度为11.3A/cm2(75A/in2)。3.3V输出时每单位体积的功率密度为57W/in2(930W/in3)。

为达到高功率密度,通常的做法是增加开关频率。相比之下,您可通过具有战略意义的组件选择来实现小型化,同时保持300kHz的较低开关频率,旨在减少MOSFET开关损耗和电感器磁芯损耗等与频率成比例的损失。表1列出了本设计的基本组件。

表1:POL模块组件、封装大小和推荐的焊盘尺寸

高密度pcb设计的价值主张

显然,pcb是一个设计中的重要(有时是最昂贵的)组件。为高密度dcdc转换器精心策划并认真实施的pcb布局的价值主张在于:

在空间受限型设计(缩减的解决方案体积和占位面积)中实现更多的功能。

减小开关环路的寄生电感,有助于:

减少功率MOSFET电压应力(开关节点电压尖峰)和鸣响。

降低开关损耗。

减少电磁干扰(EMI)、磁场耦合和输出噪声信号。

额外的容限可确保在输入轨瞬态电压干扰中安然无恙(特别是在宽VIN范围的应用里)。

增加可靠性和稳健性(降低组件温度)。

通过缩小pcb、减少滤波组件并去除缓冲器来节约成本。

与众不同的设计可提供竞争优势、赢得客户关注并增加收入。

公平地说,pcb布局可决定一个开关功率转换器最终实现的性能。当然,不必花无数个小时为EMI、噪声、信号完整性以及与较差布局相关的其它问题进行调试,这会让设计人员感到非常高兴。

收藏

相关话题

评论(0)

加载更多评论

分享到

QQ空间 QQ好友 微博
取消