• 随着数字预失真技术的深入应用,相应的数字预失真芯片也已经投入市场,用这些芯片可以构造出能实时监控输出射频信号、并在基带上进行动态预失真调整的数字预失真放大器。由于本文介绍的测试方法精度更高,因此完全可用于检测这类数字预失真芯片的预失真效果。在放大器的设计和测试工作中,我们可以根据实际情况,用其他信号源,如RS SMIQ和RS AMIQ,代替RS SMU200A;或用其他频谱仪,如RS FSU和RS FSP,代替RS FSQ,也可以获得准确的测试结果和令人满意的数字预失真效果。

  • A类(甲类)放大器,是指电流连续地流过所有输出器件的一种放大器。 这种放大器,由于避免了器件开关所产生的非线性,只要偏置和动态范围控制得当,仅从失真的角度来看,可认为它是一种良好的线性放大器。 A类放大器在结构上,还有两类不同的工作方式。其中一类是将两个射极跟随器相联工作,其偏置电流要增加到在正常负载下有足够的电流流过,而不使任一器件截止。

  • 低噪声放大器(Low-noise Amplifier,简称LNA)是处于接收机最前端的关键部件,广泛应用于移动通信、雷达、电子对抗及遥控遥测系统。它的主要作用是放大天线从空中接收到的微弱信号,降低噪声干扰,提高接收信号灵敏度,以供系统解调出所需的信息数据,其噪声、线性和匹配等性能好坏直接影响到整个接收系统的性能,本文着重对实现增益可调和提高电路的线性度和稳定性、降低噪声系数及改善电路的输入/ 输出匹配特性的方法进行了分析研究。

  • 大功率宽频带线性射频放大器模块广泛应用于电子对抗、雷达、探测等重要的通讯系统中,其宽频带、大功率的产生技术是无线电子通讯系统中的一项非常关键的技术。随着现代无线通讯技术的发展,宽频带大功率技术、宽频带跳频、扩频技术对固态线性功率放大器设计提出了更高的要求,即射频功率放大器频率宽带化、输出功率更大化、整体设备模块化。

  • 基站和手机中的RF放大器都需要具有高线性度和高效率。通过采用一些聪明的技巧,设计师可以兼顾这两个互斥的要求。 要 点 新手机标准要求采用线性RF放大器。 提高线性通常会影响效率。 数字预失真是获得高线性和高效率的一个方法。 Doherty放大器实现了一种用硬件改善效率的方法。 非线性系统建模和仿真比较困难。 手机采用了现代调制方案,该方案要求线性放大RF信号。为了达到所需线性度,典型的做法是在输出端消耗更多的功率。

  • 移动通信技术是现代通信技术和计算机技术高度发展和相互结合的产物。随着数字化信息技术的广泛应用,现代通信技术正以前所未有的高速度发展,移动通信也正沿着多址通信的方向发展。CDMA(码分多址)与FDMA(频分多址)和TDMA(时分多址)相比,具有系统容量大而且配置灵活、频谱利用率高、软切换、保密性能好的优点。基于这些优点CDMA技术得到了广泛的应用。

  • 前馈技术是一种能有效改善固放线性度指标的方法。为满足星用固放对线性度指标越来越高的要求,文中以某前馈超线性星用固放为例,介绍了前馈超线性技术在星用固放中的应用。从前馈超线性技术工作原理、固放推动放大器指标分配、主功率放大器指标分配、辅助功率放大器指标分配、矢量调制器及自适应电路选用几个方面对放大器进行了分析。实测结果证明,星用固放通过引入前馈超线性技术,三阶交调系数指标《-50 dBc,相对于传统固放线性度指

  • 电迁移是导电金属材料在通过高密度电流时,金属原子沿着电流运动方向(电子风)进行迁移和质量可控的扩散现象,它与金属材料的电流密度和温度数值密切相关。当凸点及其界面处的局部电流密度超过电迁移门槛值时,高速运动的电子流形成的电子风与金属原子发生剧烈碰撞,进行部分的冲量交换,迫使原子沿着电子流方向运动,从而发生凸点互连的电迁移。通常电迁移能在阴极造成金属原子的流失而产生微空洞,使互连面积减小导致断路,在阳极

  • 低噪声放大器(Low Noise Amplifier,LNA)广泛应用于射电天文、卫星接收、雷达通信等收信机灵敏度要求较高的领域,主要作用是放大所接收的微弱信号、降低噪声、使系统解调出所需的信息数据。而噪声系数(Noise Figure,NF)作为其一项重要的技术指标直接反映整个系统的灵敏度,所以LNA设计对整个系统的性能至关重要。

  • 分布式放大器能提供很宽的频率范围和较高的增益。有一段时间,其设计通常采用传输线作为输入和输出匹配电路。Bill Packard(惠普公司的创始人之一)早在1948年就在其论文中提出了基于分布式设计的真空管放大器电路。随着砷化镓(GaAs)微波单片集成电路的发展成熟,为了提高效率、输出功率、减小噪声系数,人们提出了很多种放大器电路类型,但是分布式放大器仍然是宽带电路(如光通信电路)的主流设计。