研究人员已经开始探索使用ML在高性能计算方面提供持续改进的可能,以解决偏微分方程和科学计算中的困难计算问题。他们发现,ML可以用来学习在更粗的网格上更好地表示PDEs。
他们能够改进现有的方案,用基于机器学习的优化规则取代基于人类深刻洞察力的启发式。根据他们的说法,他们在ML模型中发现的规则是复杂的,他们并不完全理解这些规则,但是他们集成了复杂的物理原理,比如“上卷”的概念。为了精确地模拟流体中向你吹来的东西,你应该顺着风吹来的方向向上看。下面是他们在一个简单的流体动力学模型上的结果的一个例子。
本研究的重点是提高技术,以解决更大规模的模拟现实世界的科学计算问题,如天气和气候预测。
研究人员还展示了一种将机器学习和物理有效结合起来的方法。神经网络可以与传统模拟方法中的组件相结合,从而在复杂的高维空间中学习插值的最优规则,而不是从零开始学习物理。
通过这样的研究,我们可以期待更多的增强工程系统、自然现象仿真、知识发现、可视化数据处理以及更好的优化手段。
全部0条评论
快来发表一下你的评论吧 !