电子技术领域中有着极其广泛的应用。在我们的电子设备中,经常会利用反馈来改善电路的性能,使电路的输出量(电压或电流)的变化反过来影响输入回路,从而控制输出端的变化,起到自动调节的作用。因此,反馈成为模拟电子技术这门课程中一项很重要的内容。
1、如何判别反馈
要判断一个电路是否存在反馈,只要让观察放大电路的输入回路与输出回路之间是否存在跨接的电路元件。若有此电路元件,则有反馈;反之,则无反馈。例如,在图1所示的电路中,Re既存在于输入回路中,又在输出回路中,故Re是反馈元件,说明此电路含有反馈。
2、如何判别正、负反馈
首先,采用瞬时极性法确定反馈信号的瞬时极性,而反馈信号的瞬时极性又取决于所取的输出信号的极性。掌握以下原则:
(1)对于共射极电路,c极与b极相位相反;对于共基极电路,c极与e极相位相同;对于共集极电路,e极与b极相位相同。
例如:图2所示的电路,可按上述原则对电路进行分析,设Ub1为,则电路中各点的相位关系如下:
Ue3为ß,经电阻Rf和e1返送到T1管的发射极,则Ue1为ß,即反馈信号的瞬时极性为ß。
(2)对于运算放大电路来说,反相输入端u-和输出uo相位相反,而同相输入端u+和输出uo相位相同。
例如,图3所示电路,按瞬时极性法判断。设同相输入端u+有一瞬时增量,则输出uo为,经电阻Rf返送至反相输入端,使u-为,即反馈信号的瞬时极性为。
其次,通过比较反馈信号与输入信号的瞬时极性来判断电路引入的是正反馈还是负反馈。当输入信号和反馈信号不在同一节点引入(其中一个节点为基极,另一个节点为发射极,或不同输入端)))如差动放大电路、集成运算放大电路等)时,若两者的瞬时极性相同,则为负反馈;两者的瞬时极性相反,则为正反馈。当输入信号和反馈信号从同一节点(一般为基极)引入时,若两者的瞬时极性相同,则为正反馈;两者的瞬时极性相反,则为负反馈。例如:图2所示电路引入的是正反馈,而图3所示电路引入的是负反馈。
3、电压反馈和电流反馈的判别
根据反馈到输入端的反馈信号是正比于输出电压还是正比于输出电流来分别决定是电压反馈还是电流反馈。注意我们是从输出端来判断电压反馈还是电流反馈,而不是从输入端来判断的,具体的判断方法通常可以采纳以下三种:
(1)将输出端短路(即令uo=0),观察此时电路是否仍有反馈信号。若电路中反馈信号消失,则为电压反馈;反之,若反馈仍存在,则为电流反馈。例如:在图3所示的电路中,若设uo=0,则uf=0,也就说明反馈信号消失,这类反馈就属于电压反馈。
(2)直接从输出端的取样对象来区分,若取样对象为输出电压,则为电压反馈;若取样对象为输出电流,则为电流反馈。在这里我们仍以图3电路为例,从该电路的输出端来看,取样对象为输出电压uo,由于Rf和R1组成分压器,使得反馈电压uf是uo的一部分,故为电压反馈。
(3)除公共接地线外,若输出信号与反馈信号从同一点引出,则为电压反馈;若输出信号与反馈信号从不同点引出,则为电流反馈。对于图4所示电路,反馈信号uf从输出端A点取出,而输出信号UO从O点取出,因它们取自不同点,故为电流反馈。
4、串联反馈和并联反馈的判别
串联反馈和并联反馈是以反馈信号与输入信号在电路的输入端相比较的方式来区分的。若反馈信号与输入信号是以电压形式进行比较的,则为串联反馈;若反馈信号与输入信号是以电流形式进行比较的,则为并联反馈。
需要强调,此时是从输入端来判断串联反馈还是并联反馈,而不是从输出端来判断的。具体的判断方法可以采用以下两种:
(1)如果反馈信号与输入信号在输入回路中以电压形式相加减(即反馈信号与输入信号串联),则为串联反馈;如果二者以电流形式相加减(即反馈信号与输入信号并联),则为电流反馈。例如,在图3所示电路中,反馈信号是以电压形式与输入电压相减,即Uid=ui-uf,因此是串联反馈。
(2)除公共接地线外,若输入信号与反馈信号从同一点引入,则为并联反馈;若输入信号与反馈信号从不同点引入,则为串联反馈。对于图3所示电路,反馈信号uf从运算放大电路的反相输入端引入,而输入信号从运算放大电路的同相输入端引入,因不在同一点引入,则该反馈为串联反馈。
众所周知,模拟电路难学。以最普遍的晶体管来说,我们分析它的时候必须首先分析直流偏置,其次再分析交流输出电压。可以说,确定工作点就是一项相当麻烦的工作(实际中来说),晶体管的参数多、参数的离散性也较大。但值得我们注意的是,模拟电路构建了电子行业的基础。
全部0条评论
快来发表一下你的评论吧 !