人工智能
科技发展造福社会,随着大数据时代的到来,人工智能(AI)、机器学习、深度学习等概念相继出现在我们的生活中,那么它们之间究竟有什么区别和联系呢?人工智能就是研究如何使计算机去做过去只有人才能做的智能工作,是一门新的技术科学,属于计算机科学领域的一个分支。人工智能的研究领域包含自然语言处理、图像识别、机器人等。
机器学习是一门人工智能的科学,即人工智能领域中的一个子集,也是其核心,属于多种领域的交叉学科。机器学习可以类比于人类学习知识的过程,人类想要获取知识,首先需要对资料进行学习。机器学习过程与人类学习的过程相似,也需要预先对大量的学习资料进行学习来得到模型。当有新的样例时,通过模型对新的样例进行判断,输出结果,从而实现对真实世界中的样例进行预测的功能。机器学习在计算机视觉、医学诊断、数据挖掘、搜索引擎等领域均有应用。
深度学习是基于人工神经网络发展而成的概念,是机器学习的子集。人工神经网络是对人脑神经元网络的抽象,也是早期机器学习中的一种算法,其主要应用于图像识别、语音识别、自然语言处理等领域。
人工智能包含了机器学习,机器学习包含了深度学习,其中人工智能出现得最早。举例而言,如果想让机器区分一张图片中是猫还是狗,我们可以使用人工智能来解决,那么如何区分则可以使用机器学习的方法,通过对大量猫和狗的图片数据进行学习,经过算法处理生成模型,来预测一张新的图片中的动物究竟是猫还是狗。
机器学习和深度学习的区别是,机器学习大部分算法需要人类自己寻找特征,在上述例子中,我们需要告诉机器具体从哪方面去学习图片中的动物是猫还是狗,如告诉机器可以从毛发颜色(即特征)的角度去学习,图片中的猫的毛发是白色的,图片中的狗的毛发是黄色的,机器通过这些人类告诉它的特征信息进行学习,并对新的图片中的猫和狗进行区分。而深度学习可以自动生成特征,即我们不需要告诉机器从哪些角度去学习,机器能够自己寻找角度来学习图片的信息,并对图片进行区分。但是深度学习也需要更多的数据,才能得到准确的结果。
全部0条评论
快来发表一下你的评论吧 !