关于人工智能未来的发展趋势

人工智能

636人已加入

描述

与其他技术和软件工具不同,人工智能主要依赖专业的处理器。为了适应人工智能的复杂需求,芯片制造商将研发能够运行启用人工智能的特制芯片。甚至像谷歌、脸书和亚马逊等科技巨头也会在这些特制芯片上投入更多资金。这些芯片会被用于与人工智能相关的特殊用途,比如自然语言处理、计算机视觉领域和语音识别。

2019年是不同技术与人工智能融合的一年。物联网将在边缘计算层与人工智能携手合作。产业物联网将利用人工智能的强大功能进行根本原因分析、执行机器的预测性维护和自动检测问题。我们将在2019年看到分布式人工智能的兴起。智能将被分散,并且将更靠近正在进行例行检查的资产和设备。由神经网络驱动的高度复杂的机器学习模型将被优化,以便在边缘运行。

自动化机器学习系统是2019年人工智能产业最显著的发展趋势之一。有了自动学习的能力,开发者能够修补机器学习模型,创造准备好迎接未来人工智能挑战的机器学习新模型。

自动化机器学习系统将介于认知应用程序编程接口和定制机器学习平台之间。自动化机器学习系统最大的优势是,它向开发者提供了他们要求的自定义选项,同时简化了工作流程。当你把数据和可移植性相结合,自动化学习系统可以为你提供其他人工智能技术不具有的灵活性。

当人工智能用于应用程序时,它将改变我们管理基础架构的方式。 DevOps将被智能运维取代,它将使你的IT员工能够进行精确的根本原因分析。此外,它还可以让你轻松地从庞大的数据库中立即找到有用的见解和模式。大型企业和云供应商将受益于DevOps与人工智能的融合。

在开发神经网络模型时,人工智能开发人员将面临的最大挑战之一是选择最佳框架。有了市场上的数十种人工智能工具,选择最好的人工智能开发工具可能不像以前那么容易。不同神经网络工具包之间缺乏集成性和兼容性,这阻碍了人工智能的采用。微软和脸书等科技巨头已经在开发开放式神经网络交换(ONNX),允许开发人员跨越多个框架,重新使用神经网络模型。

市场对专业系统的需求将在2019年成倍增长。各组织拥有的数据有限,但他们想要的是专业数据。这样的需求会驱动企业掌握可以帮助组织在内部生成高质量人工智能数据的工具。2019年,重点将从数据量转移到数据质量。这将为可以在现实世界中发挥作用的人工智能奠定基础。企业将寻求能够专业人工智能解决方案提供商,帮助企业访问关键数据源,理解非结构化数据。

虽然人工智能已经改变了你能想到的所有行业,但业界仍然缺乏拥有大量人工智能技能的人才。Espressive(加拿大电脑软件公司)的首席执行官帕特卡尔·霍恩(Pat Calhoun)说:“大多数组织都希望将人工智能作为数字化转型的一部分,但没有兑现承诺——让开发人员、人工智能专家和语言学家开发解决方案,甚至没有培养预先构建解决方案的引擎。

Awake Security(美国加利福尼亚州的威胁检测厂商)的首席执行官拉胡尔·卡什亚普(Rahul Kashyap)补充说:“有这么多人工智能驱动解决方案,企业现在应该更敏锐地了解他们的人工智能解决方案的‘黑匣子’中发生的事情。”他继续说道:“人工智能算法的训练、结构化或通知方式可能会导致输出的显著差异。适用于一家公司的正确方程将不适用于另一家公司。”

就像硬币有正反两面一样,人工智能也有正面和负面影响。信息安全专家将使用人工智能来快速检测恶意活动。借助人工智能驱动的响应和机器学习算法,误报将减少90%。人工智能如果落入不法分子手中,网络犯罪分子将滥用它来完成他们的恶意企图。通过自动化,网络黑客的军队可以更成功地发动致命攻击。这将迫使企业以毒攻毒,投资人工智能驱动的安全解决方案。这些方案能够保护他们免受人工智能发起的攻击。

2019年,人工智能无处不在。从网络应用到医疗保健系统,从航空公司到酒店预订系统等,我们能在每个地方看到人工智能,它将处于数字化转型的最前沿。夏威夷大学IT部门主席兼教授董贝博士(Dr.Tung Bui)说:“由于制度、政治和社会原因,人工智能发展需要时间。我认为人工智能的最大趋势将是加速数字化转型,使现有的业务系统更加智能化。”

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分