MEMS/传感技术
称重传感器原理
在称重传感器主要技术指标的基本概念和评价方法上,新旧国标有质的差异。一、什么是传感器?
传感器是将被测的某一物理量(或信号)按一定的规律转换为与其对应的另一种(或同种)物理量(或信号)输出的装置。
二、传感器发展方向
1. 高精度、高灵敏度;
2. 高可靠性、宽温度范围、抗干扰强;
3. 微型化(小尺寸、重量轻)和高强度;
4. 微功耗及无源化;
5. 智能化、数字化、高响应速率;
6. 互换性好,成本低,安全无污染方向;
7. 抗环境影响(热、振动、酸、碱、水、空气)能力强方向
8. 仿生传感器:将传感器的功能与人类5大感觉器官相比拟:
1) 光敏——视觉; 2) 声敏——听觉; 3) 气敏——嗅觉;
4) 化学——味觉; 5) 压敏、温敏、流体传感器——触觉
第二节 称重传感器工作原理
一、称重传感器的基本知识
1. 定义:GB/T7551-1997《称重传感器》
考虑到使用地点的重力加速度(g)和空气浮力(f)的影响后,通过把其中一种被测量(质量)转换成另外一种被测量(输出)来测量质量的力传感器。
2. 组成
敏感元件+传感元件+测量电路
其中:敏感元件——电阻应变计; 传感元件——弹性体; 测量电路——惠斯通电桥
二、电阻应变计工作原理
以金属材料为转换元件的电阻应变计,其转换原理是基于金属电阻丝的电阻——应变效应。
所谓应变效应是指金属导体(电阻丝)的电阻值随变形(伸长或缩短)而发生改变的一种物理现象。如下图所示:
1. 受力前(F=0)电阻值
R=ρ*L/S (1)
式中R——金属丝的电阻(Ω); ρ——金属丝的电阻率(Ω*M);
L——金属丝的长度(m); S——金属丝的横截面积(m2)(πD2/4)
D——金属丝的直径(m)
2. 受力后(F>0)电阻变化值
⊿R=R*Kε (2)
式中⊿R——电阻变化量; R——原始电阻值;
K——应变计的灵敏系数; ε——轴向应变
结论:金属丝拉伸,电阻值增加;
金属丝压缩,电阻值减小
3. 几种常见的电阻应变计外形
4. 电阻应变计的组成部分
5. 我公司常用应变计的阻值(Ω)
350;700;1000
三、称重传感器的工作原理
1. 两个典型的力学模型
当F>0时,R1、R3被拉伸,阻值增大;R2、R4被压缩,阻值减小。
2. 惠斯顿电桥
在应变计的电测技术中,应用最广泛的测量电路是惠斯通电桥电路。测量电桥由于具有灵敏度高、测量范围宽、电路结构简单、精度高、容易实现温度补偿等优点,因此能很好地满足应变测量的要求。
电桥根据电源的性质分直流电桥和交流电桥两种,当Ui为直流时该电桥为直流电桥。电桥电路如上图所示,它的四个桥臂由R1、R2、R3、R4组成。
1) 直流电桥的电压输出
根据分压原理,从D-A-C半桥来看,从D经A到C的电压降为Ui,通过R1、R2的电流
I1=Ui/(R1+R2) (1)
R2上的电压降为I1R2,代入(1)得
UAC=Ui*R2/(R1+R2) (2)
同样,D-B-C半桥的电压降也是Ui,R3上的电压降为:
UBC=Ui*R3/(R3+R4) (3)
则输出电压UO是UBC与UAC之间的差,即
R1R3-R2R4
(R1+R2)(R3+R4)
由(4)可知,当桥臂电阻满足如下条件时,即
R1R3=R2R4 (5)
电桥的输出电压UO=0,电桥处于平衡状态。
为了保证测量的准确性,在实测之前应使电桥平衡(置零),这样输出电压只与应变计感受应变所引起的电阻变化有关。
2) 按上述力学模型解释:
当F=0时,R1R3=R2R4;U0=0;
当F>0时,R1、R3增加,R2、R4减小,U0>0。
若欲得到与上述电信号相反的结果时,只需将A与C(或B与D)之间的电源正、负极互换即可。
3) 当桥臂电阻的阻值发生变化时,电桥的输出电压也随着发生变化,当⊿R<
本节需掌握重点:
1、应变计的工作原理;
2、电阻应变计的结构组成;
3、测量电路作业原理;
4、称重传感器的主要组成部分;
5、我公司常用电阻应变计的阻值。
第三节 称重传感器的补偿
一、常见补偿内容:
1. 零点不平衡输出调整;
2. 零点温度补偿;
3. 弹性模量补偿;
4. 非线性补偿;
5. 灵敏度补偿;
6. 输入电阻调整;
二、补偿原理图
R1~R4:桥路应变计电阻;(常规为350Ω)
作用:直接感受弹性体的应变。
RZ:零点补偿电阻;
作用:把空载输出信号调整到要求范围;
材料:康铜丝(电阻温度系数小);
特性:对温度不敏感
RT:零点温度补偿电阻;
作用:把空载下因环境温度的变化而引起的漂移加以补偿;
材料:镍电阻
特性:对温度敏感
RM:弹性模量补偿电阻;
作用:补偿因环境变化造成的传感器满负荷输出的变化;
材料:镍丝、镍片电阻
特性:对温度敏感
RM’:弹性模量补偿线性化调整电阻;
作用:调整弹模补偿的效果;
材料:金属膜电阻;
特性:对温度不敏感
RL:线性补偿电阻;
作用:调整传感器天然非线性误差,使呈线性;
材料:半导体应变计
特性:对温度敏感
RL’:线性补偿调整电阻;
作用:调整线性补偿效果
材料:金属膜电阻
特性:对温度不敏感
RS:灵敏度补偿电阻;
作用:调整传感器满负荷输出,使具有互换性;
材料:康铜丝
特性:对温度不敏感
Rj:输入电阻调整电阻
作用:调整传感器输入电阻,使具有互换性;
材料:金属膜电阻
特性:对温度不敏感
三、为什么要进行上述补偿?
1. 零点补偿(Rz)
有些使用场合,当传感器零点超过一定范围时,现场仪表显示异常(不接收或溢出),或者控制系统报警、失控等。
2. 零点温度补偿(Rt)
室外作业的电子衡器或其他称重检测装置,当传感器感受不同温度(如早上与中午的温差),其内部电阻值产生相应变化,最终反馈到显示或控制装置,使系统作业出现异常如数字不稳或系统零位偏差等,影响正常工作。
3. 弹性模量补偿(Rm)
弹性体金属材料自身都有弹性模量(E)且随温度的变化而产生微量变化,在同样的测量负荷下,天热时仪表显示的读数要大于天冷时的读数(称量产生了偏差)。这对于高精度计量是不允许的。
4. 非线性补偿
是针对纯柱式结构传感器先天性线性不良传感器而言,通过补偿可有效改进传感器的精度,满足高精度计量要求。
5. 灵敏度补偿
如果一张桌子有3或4条腿,当3或4条腿长度不一致时,桌子便不稳固,容易倒掉。
同样,对一台由2个以上传感器组成的电子衡器而言,若传感器的灵敏度不一致,那么这台衡器便处于非稳态,被称物品在秤台的不同方位会得到不同的结果,而最多只有一个结果是正确的。这种情况是衡器产品所不允许的,无法完成“公平交易”的目的。
6. 输入电阻调整
同灵敏度补偿情况。
本节需掌握重点:
1、称重传感器常见六大补偿
2、进行六大补偿的原因
3、灵敏度不一致可能导致的结果
全部0条评论
快来发表一下你的评论吧 !