模拟技术
IBM在博客中的一篇文章中指出,通过使用基于相变存储器(Phase-Change Memory,简称PCM)的模拟芯片,机器学习可以加速一千倍。相变存储器基于硫化物玻璃材料,这种材料在施加合适的电流时会将其相从晶态变为非晶态并可恢复。每相具有不同的电阻水平,在相位改变之前是稳定的。两个电阻构成二进制的1或0。
PCM是非易失性的,访问延迟与DRAM水平相当,他们都是存储级内存的代表。英特尔与美光联合开发的3D XPoint技术就基于PCM。IBM在博客中透露,为了实现AI真正的潜力,在纽约州立大学和创始合作伙伴成员的支持下,IBM正在建立一个研究中心,以开发新一代AI硬件,并期待扩展其纳米技术的联合研究工作。
IBM Research AI硬件中心合作伙伴涵盖半导体全产业链上的公司,包括IBM制造和研究领域的战略合作伙伴三星,互联解决方案公司Mellanox Technologies,提供仿真和原型设计解决方案软件平台提供商Synopsys,半导体设备公司Applied Materials和Tokyo Electron Limited(TEL)。
还与纽约州奥尔巴尼的纽约州立大学理工学院主办方合作,进行扩展的基础设施支持和学术合作,并与邻近的伦斯勒理工学院(RPI)计算创新中心(CCI)合作,开展人工智能和计算方面的学术合作。IBM研究院的半导体和人工智能硬件副总裁Mukesh Khare表示,目前的机器学习限制可以通过使用新的处理硬件来打破。
Mukesh Khare提到将深度神经网络(DNN)映射到模拟交叉点阵列(模拟AI核心)。它们在阵列交叉点处具有非易失性存储器材料以存储权重。DNN计算中的数值被加权以提高训练过程中决策的准确性。这些可以直接用交叉点PCM阵列实现,无需主机服务器CPU干预,从而提供内存计算,无需数据搬移。与英特尔XPoint SSD或DIMM等数字阵列形成对比,这是一个模拟阵列。
全部0条评论
快来发表一下你的评论吧 !