光量子芯片技术成熟后可以用于量子人工智能等学科方面等研究

电子说

1.3w人已加入

描述

把“命门”掌握在自己手中。

摩尔定律提出后的半个多世纪,日趋走向瓶颈的集成技术加上更高算力的巨大需求,一再将它推向终结。

“电子芯片的集成度已经到几个纳米级了,如果再到原子级就走到极限了,到那时,线路间的电子会互相干涉而不能正常工作,甚至散热都将面临极大挑战,但人类的计算能力不能停止。”上海交通大学物理与天文学院教授金贤敏正用光量子芯片,试探量子计算的边界。

近年来,他针对量子信息技术的特点进一步发展了飞秒激光直写技术,制备出世界最大规模的三维集成光量子芯片,并演示了首个真正空间二维的随机行走量子计算。同时,他在此芯片中构建了大规模六方粘合树,并通过这种高可扩展性结构演示了量子快速到达算法内核,相比经典情形最优效率提高10倍。

芯片化、集成化成量子信息技术热点

闪烁的激光不断将光束投射在一张透明基片上,很快,一个刻有4800个光子回路的波导阵列,以肉眼看不到的精度成型。不久的将来,这种光量子芯片将载着一个或多个光子,在数万个波导中“奔跑”,去证明量子计算的潜力和能量。

在上海交通大学光子集成与量子信息实验室,金贤敏正带着学生制备量子光学集成芯片。

两年来,他在南京大学陆延青教授领衔的国家重点研发计划“人工微结构中的量子、类量子效应及功能集成光子芯片”项目中,承担光量子芯片等领域的研究。

金贤敏介绍,光量子芯片的研究从2008年左右在全球兴起。目前,芯片化、集成化已经成为量子信息技术迈向实用化的研究热点和战略方向,牛津大学、布里斯托大学、罗马大学、麻省理工学院等名校已经开始在光量子芯片和量子计算等领域发力。

不过,2014年金贤敏回国时,国内的相关研究刚起步。金贤敏整整想了一年多,最终确定基于飞秒激光直写的三维集成光量子芯片的研发,来解决量子系统的物理可扩展性瓶颈;同时,拓展由空到海的量子通信和量子探测的探索,发展可在室温下运行的宽带量子存储技术。

不发表论文,沉寂4年攻克关键技术

目前,国际上有关光量子芯片的制备工艺涉及飞秒激光直写、离子交换、UV激光直写以及硅基工艺等加工方式。

“此前的飞秒激光直写技术主要集中在构建二维光子线路上,但对于大算力的光量子芯片来说,三维集成的优势更明显,这可以让芯片中的量子系统复杂度更高、维度更大、节点更多,从而提高量子计算的算力。”金贤敏表示,从2014年起,他开始带领团队用飞秒激光直写技术攻克三维集成技术。

所谓飞秒激光直写,是在几百飞秒时间内,将一个脉冲的能量释放在芯片基底的每个焦点附近,通过移动激光,在芯片中“写”出光子线路。“因为激光脉冲非常短,直写时能量在几百飞秒时间内被吸收,所以热量还没有来得及散发就以改变材料属性的方式固化下来,我们就可以很平滑地改变芯片内部的性质,形成高品质的光子线路。”金贤敏说。

然而,激光汇聚到芯片中,在不同的深度,被芯片吸收的程度不同,导致呈现不同的特性。为了将量子光信号束缚住,从2014年到2018年,金贤敏和团队成员一起翻看文献,研究复杂的技术特点,不断设计激光走向、编写代码、调整波导中光束的折射率,生成自己的“秘密配方”。

由于面向光量子信息的直写技术和工艺完全自主研发,制备芯片的效率也大大提高,“例如直写单个阵列2401根波导的芯片,我们的团队只需要1天,而当时英国的团队可能需要半年,而且他们制备的波导阵列基本为二维,且波导数仅有几百个。”此外,刻蚀后的芯片,光子演化的损耗能控制在0.16分贝/厘米,低于国际平均水平的0.2分贝/厘米。

这4年,金贤敏甘坐冷板凳,他没有急于发表论文,“只要不出差,在上海工作时,有三分之一的时间都会通宵”。他说,在电子芯片时代,我国在芯片的制备和封装等环节受制于人,而研发飞秒激光直写技术,正是要推动光量子芯片制备环节的突破。

光量子集成技术可用于制药、成像、黑洞模拟

在量子计算领域,量子行走是专用量子计算的重要内核。在光量子芯片实验过程中,金贤敏团队设计的三维波导阵列实现了二维连续量子行走。量子达到至少100多个行走步径,突破了过去所有的量子行走实验纪录。

“量子行走具有天然的叠加态特性,到了二维空间,面对分叉选择的时候,量子可以从上下左右四个方向同时走过去,效率大大提高。”金贤敏解释,量子行走在粘合树结构上“快速到达”的优势尤为突出。他和团队巧妙提出了一种具有充分可扩展性的六方粘合树结构,这种结构即使层数很大,都可以在芯片中很好地用三维波导来实现。

结果显示,量子算法可实现约90%的最优到达效率,最优演化长度约为25毫米。而经典算法只能缓慢地达到最优演化情形,且最优到达效率只有6.25%。“有了基于三维集成光量子芯片的大规模量子演化系统,意味着研发各种专用光量子计算算法的实验实现成为可能。”金贤敏说。

有研发可能性的还不止在计算和优化问题方面的应用。金贤敏表示,在光量子芯片中的量子演化分布,未来还有望用于黑洞模拟、量子人工智能、量子拓扑光子学、生物医药及成像等学科的综合性研究。

迈出重要一步:首款3D原子级硅量子芯片架构问世

据澳大利亚新南威尔士大学官网近日报道,该校科学家证明,他们可以在3D设备中构建原子精度的量子比特,并实现精准的层间对齐与高精度的自旋状态测量,最终得到全球首款3D原子级硅量子芯片架构,朝着构建大规模量子计算机迈出了重要一步。

在最新研究中,新南威尔士大学量子计算与通信技术卓越中心教授米歇尔·西蒙斯领导研究团队,将原子级量子比特制造技术应用于多层硅晶体,获得了这款3D原子级量子芯片架构。

西蒙斯解释说:“对于原子级的硅量子比特来说,这种3D架构是一个显着的进展。为了能够持续不断地纠正量子计算中的错误——也是量子计算领域的一个里程碑,我们必须能并行控制许多量子比特。实现这一目标的唯一方法是使用3D架构,因此在2015年,我们开发出一个垂直交叉架构,并申请了专利。然而,这种多层设备的制造还面临一系列挑战。现在,我们通过新研究证明,几年前我们设想的3D方法是可行的。”

在新的3D设计内部,原子级量子比特与控制线(非常细的线)对齐。此外,团队也让3D设备中的不同层实现了纳米精度的对齐——他们展示了一种可实现5纳米精度对齐的技术。

最后,研究人员还通过单次测量获得3D设备的量子比特输出,而不必依赖于数百万次实验的平均值,这有望促进该技术的进一步升级。

西蒙斯教授说,尽管距离大规模量子计算机还有至少十年时间,但我们正在系统性地研究大规模架构,这将引领我们最终实现该技术的商业化。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分