晶体管利用热敏电阻实现温度补偿的电路

IC应用电路图

491人已加入

描述

晶体管利用热敏电阻实现温度补偿的电路

晶体管的主要参数,如电流放大倍数、基极-发射极电压、集电极电流等,都与环境温度密切相关。因此,在晶体管电路中需要采取必要的温度补偿措施,才能获得较高的稳定性和较宽的使用环境温度范围。
    采用NTC热敏电阻器的晶体管温度补偿电路,普遍存在高温(一般在50℃以上)补偿不足、输入阻抗随温度升高而下降,功耗较大等缺点。PTC热敏电阻 晶体管温度补偿电路能克服上述缺点,扩大晶体管使用环境温度范围。

    2.1.1 原理电路

                    温度补偿

                                            图2.1.1  三种接法的基本补偿电路

    图2.1.1(a)(b)(c) 为三种不同接法的晶体管基本补偿电路,适用于不同的晶体管及工作电流,以求保证在较宽的温度范围内的最佳补偿效果。此外,图2.1.1(b)和图2.1.1(c)除有稳定工作电流的作用外, 还兼有过热过流保护的功能,即当电流或环境温度超过设定值时,RT阻值剧增,从而使使晶体管截止。

    2.1.2 应用举例
    晶体管放大电路

                                   温度补偿 

                                                        图2.1.2  晶体管放大电路

    图2.1.2为采用PTC热敏电阻的晶体管放大电路。 图中RT为25℃时阻值180Ω的PTC热敏电阻,当环境温度变化时,其阻值随之变化使晶体管发射极电压呈反向变化,从而使集电极电流保持稳定。

                                  温度补偿

                                                    图2.1.3  Ia、Av随环境温度Ta的变化

    图2.1.3是环境温度在-20~+60℃范围内,集电极电流Ic及电压放大系数Av的变化情况。 图中,曲线1、3是采用了PTC热敏电阻的补偿结果,曲线2、4是没有采用PTC热敏电阻补偿的结果。由于引入了PTC热敏电阻器,集电极电流Ic及电压放大系数Av抗环境温度影响的能力得到显著改进。

温度升高,电流增大,NTC热敏电阻阻值下降,Ub下降,Ib减小,稳定晶体管静态工作点。
打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
评论(0)
发评论
rock_anson 2014-09-02
0 回复 举报
参考一下,谢谢。 收起回复

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分