如何用Arduino UNO实现DTMF解码器

电子说

1.3w人已加入

描述

步骤1:了解算法

Arduino

在DTMF中,每个符号根据图片上的表格使用两个频率进行编码。

该设备捕获麦克风的输入并计算八个频率的幅度。具有最大幅度的两个频率给出了编码符号的一行和一列。

数据采集

为了执行频谱分析,应以某个可预测的频率捕获样本。为了达到这个目的,我使用了具有最大精度的自由运行ADC模式(预分频器128),它提供了9615Hz的采样率。下面的代码显示了如何配置Arduino的ADC。

void initADC() {

// Init ADC; f = ( 16MHz/prescaler ) / 13 cycles/conversion

ADMUX = 0; // Channel sel, right-adj, use AREF pin

ADCSRA = _BV(ADEN) | // ADC enable

_BV(ADSC) | // ADC start

_BV(ADATE) | // Auto trigger

_BV(ADIE) | // Interrupt enable

_BV(ADPS2) | _BV(ADPS1) | _BV(ADPS0); // 128:1 / 13 = 9615 Hz

ADCSRB = 0; // Free-run mode

DIDR0 = _BV(0); // Turn off digital input for ADC pin

TIMSK0 = 0; // Timer0 off

}

And the interrupt handler looks like this

ISR(ADC_vect) {

uint16_t sample = ADC;samples[samplePos++] = sample - 400;

if(samplePos 》= N) {

ADCSRA &= ~_BV(ADIE); // Buffer full, interrupt off

}

}

频谱分析

收集样本后,我计算出8个频率的幅度,这些频率编码符号。我不需要为此运行完整的FFT,因此我使用了Goertzel的算法。

void goertzel(uint8_t *samples, float *spectrum) {

float v_0, v_1, v_2;

float re, im, amp;

for (uint8_t k = 0; k 《 IX_LEN; k++) {

float c = pgm_read_float(&(cos_t[k]));

float s = pgm_read_float(&(sin_t[k]));

float a = 2. * c;

v_0 = v_1 = v_2 = 0;

for (uint16_t i = 0; i 《 N; i++) {

v_0 = v_1;

v_1 = v_2;

v_2 = (float)(samples[i]) + a * v_1 - v_0;

}

re = c * v_2 - v_1;

im = s * v_2;

amp = sqrt(re * re + im * im);

spectrum[k] = amp;

}

}

步骤2:代码

Arduino

上图显示了数字3的编码示例,其中最大幅度对应于697Hz和1477Hz频率。

完整的草图如下

/**

* Connections:

* [ Mic to Arduino ]

* - Out -》 A0

* - Vcc -》 3.3V

* - Gnd -》 Gnd

* - Arduino: AREF -》 3.3V

* [ Display to Arduino ]

* - Vcc -》 5V

* - Gnd -》 Gnd

* - DIN -》 D11

* - CLK -》 D13

* - CS -》 D9

*/

#include

#include

#include

#define CS_PIN 9

#define N 256

#define IX_LEN 8

#define THRESHOLD 20

LEDMatrixDriver lmd(1, CS_PIN);

uint8_t samples[N];

volatile uint16_t samplePos = 0;

float spectrum[IX_LEN];

// Frequences [697.0, 770.0, 852.0, 941.0, 1209.0, 1336.0, 1477.0, 1633.0]

// Calculated for 9615Hz 256 samples

const float cos_t[IX_LEN] PROGMEM = {

0.8932243011955153, 0.8700869911087115, 0.8448535652497071, 0.8032075314806449,

0.6895405447370669, 0.6343932841636456, 0.5555702330196023, 0.4713967368259978

};

const float sin_t[IX_LEN] PROGMEM = {

0.44961132965460654, 0.49289819222978404, 0.5349976198870972, 0.5956993044924334,

0.7242470829514669, 0.7730104533627369, 0.8314696123025451, 0.8819212643483549

};

typedef struct {

char digit;

uint8_t index;

} digit_t;

digit_t detected_digit;

const char table[4][4] PROGMEM = {

{‘1’, ‘2’, ‘3’, ‘A’},

{‘4’, ‘5’, ‘6’, ‘B’},

{‘7’, ‘8’, ‘9’, ‘C’},

{‘*’, ‘0’, ‘#’, ‘D’}

};

const uint8_t char_indexes[4][4] PROGMEM = {

{1, 2, 3, 10},

{4, 5, 6, 11},

{7, 8, 9, 12},

{15, 0, 14, 13}

};

byte font[16][8] = {

{0x00,0x38,0x44,0x4c,0x54,0x64,0x44,0x38}, // 0

{0x04,0x0c,0x14,0x24,0x04,0x04,0x04,0x04}, // 1

{0x00,0x30,0x48,0x04,0x04,0x38,0x40,0x7c}, // 2

{0x00,0x38,0x04,0x04,0x18,0x04,0x44,0x38}, // 3

{0x00,0x04,0x0c,0x14,0x24,0x7e,0x04,0x04}, // 4

{0x00,0x7c,0x40,0x40,0x78,0x04,0x04,0x38}, // 5

{0x00,0x38,0x40,0x40,0x78,0x44,0x44,0x38}, // 6

{0x00,0x7c,0x04,0x04,0x08,0x08,0x10,0x10}, // 7

{0x00,0x3c,0x44,0x44,0x38,0x44,0x44,0x78}, // 8

{0x00,0x38,0x44,0x44,0x3c,0x04,0x04,0x78}, // 9

{0x00,0x1c,0x22,0x42,0x42,0x7e,0x42,0x42}, // A

{0x00,0x78,0x44,0x44,0x78,0x44,0x44,0x7c}, // B

{0x00,0x3c,0x44,0x40,0x40,0x40,0x44,0x7c}, // C

{0x00,0x7c,0x42,0x42,0x42,0x42,0x44,0x78}, // D

{0x00,0x0a,0x7f,0x14,0x28,0xfe,0x50,0x00}, // #

{0x00,0x10,0x54,0x38,0x10,0x38,0x54,0x10} // *

};

void initADC() {

// Init ADC; f = ( 16MHz/prescaler ) / 13 cycles/conversion

ADMUX = 0; // Channel sel, right-adj, use AREF pin

ADCSRA = _BV(ADEN) | // ADC enable

_BV(ADSC) | // ADC start

_BV(ADATE) | // Auto trigger

_BV(ADIE) | // Interrupt enable

_BV(ADPS2) | _BV(ADPS1) | _BV(ADPS0); // 128:1 / 13 = 9615 Hz

ADCSRB = 0; // Free-run mode

DIDR0 = _BV(0); // Turn off digital input for ADC pin

TIMSK0 = 0; // Timer0 off

}

void goertzel(uint8_t *samples, float *spectrum) {

float v_0, v_1, v_2;

float re, im, amp;

for (uint8_t k = 0; k 《 IX_LEN; k++) {

float c = pgm_read_float(&(cos_t[k]));

float s = pgm_read_float(&(sin_t[k]));

float a = 2. * c;

v_0 = v_1 = v_2 = 0;

for (uint16_t i = 0; i 《 N; i++) {

v_0 = v_1;

v_1 = v_2;

v_2 = (float)(samples[i]) + a * v_1 - v_0;

}

re = c * v_2 - v_1;

im = s * v_2;

amp = sqrt(re * re + im * im);

spectrum[k] = amp;

}

}

float avg(float *a, uint16_t len) {

float result = .0;

for (uint16_t i = 0; i 《 len; i++) {

result += a[i];

}

return result / len;

}

int8_t get_single_index_above_threshold(float *a, uint16_t len, float threshold) {

if (threshold 《 THRESHOLD) {

return -1;

}

int8_t ix = -1;

for (uint16_t i = 0; i 《 len; i++) {

if (a[i] 》 threshold) {

if (ix == -1) {

ix = i;

} else {

return -1;

}

}

}

return ix;

}

void detect_digit(float *spectrum) {

float avg_row = avg(spectrum, 4);

float avg_col = avg(&spectrum[4], 4);

int8_t row = get_single_index_above_threshold(spectrum, 4, avg_row);

int8_t col = get_single_index_above_threshold(&spectrum[4], 4, avg_col);

if (row != -1 && col != -1 && avg_col 》 200) {

detected_digit.digit = pgm_read_byte(&(table[row][col]));

detected_digit.index = pgm_read_byte(&(char_indexes[row][col]));

} else {

detected_digit.digit = 0;

}

}

void drawSprite(byte* sprite) {

// The mask is used to get the column bit from the sprite row

byte mask = B10000000;

for(int iy = 0; iy 《 8; iy++ ) {

for(int ix = 0; ix 《 8; ix++ ) {

lmd.setPixel(7 - iy, ix, (bool)(sprite[iy] & mask ));

// shift the mask by one pixel to the right

mask = mask 》》 1;

}

// reset column mask

mask = B10000000;

}

}

void setup() {

cli();

initADC();

sei();

Serial.begin(115200);

lmd.setEnabled(true);

lmd.setIntensity(2);

lmd.clear();

lmd.display();

detected_digit.digit = 0;

}

unsigned long z = 0;

void loop() {

while(ADCSRA & _BV(ADIE)); // Wait for audio sampling to finish

goertzel(samples, spectrum);

detect_digit(spectrum);

if (detected_digit.digit != 0) {

drawSprite(font[detected_digit.index]);

lmd.display();

}

if (z % 5 == 0) {

for (int i = 0; i 《 IX_LEN; i++) {

Serial.print(spectrum[i]);

Serial.print(“ ”);

}

Serial.println();

Serial.println((int)detected_digit.digit);

}

z++;

samplePos = 0;

ADCSRA |= _BV(ADIE); // Resume sampling interrupt

}

ISR(ADC_vect) {

uint16_t sample = ADC;

samples[samplePos++] = sample - 400;

if(samplePos 》= N) {

ADCSRA &= ~_BV(ADIE); // Buffer full, interrupt off

}

}

步骤3:原理图

Arduino

应进行以下连接:

麦克风与Arduino

Out -》 A0

Vcc -》 3.3V

Gnd -》 Gnd

将AREF连接到3.3V很重要。

显示到Arduino

Vcc -》 5V

Gnd -》 Gnd

DIN -》 D11

CLK -》 D13

CS -》 D9

步骤4:结论

这里可以改进什么?我以9615Hz的速率使用N = 256个样本,该速率有一些频谱泄漏,如果N = 205且速率为8000Hz,则所需频率与离散化网格重合。对于该ADC,应在定时器溢出模式下使用。
        责任编辑:wv

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分