电工基础电路图
单相电度表工作原理
当电度表接入被测电路后,被测电路电压U加在电压线圈上,在其铁芯中形成一个交变的磁通,这个磁通的一部分ΦU由回磁极穿过铝盘到回到电压线圈的铁芯中;同理,被测电路电流I通过电流线圈后,也要在电流线圈的U形铁芯中形成一个交变磁通Φi,这个磁通由U形成铁芯的一端由下至上穿过铝盘,然后又由上至下穿过铝盘回到U形铁芯的另一端。电度表的电路和磁路如图6-3所示,其中回磁板4是由钢板冲制而成的,它的下端伸入铝盘下部,与隔着铝盘和电压部件的铁芯柱相对应,以便构成电压线圈工作磁通的回路。
图6-3 电度表的电路和磁路
(a)铁芯结构 (b)电路和磁路
1—电流元件铁芯 2电压元件铁芯 3—铝盘 4—回磁板
由于穿过铝盘的两个磁通是交流磁通,而且是在不同位置穿过铝盘,因此就在各自穿
图4 铝盘上的磁通和涡流 |
式中,K为一比例常数。Φ是I与U的相位差。当铝盘在转动力矩的作用下开始转动时,切割穿过它的永久磁铁的磁通Φf,将在其上产生一个涡流if。这个涡流与永久磁铁的相互作用,将产生一个作用于铝盘与其转动方向相反的力矩Mf,称为制动力矩。显然,铝盘转动越快,切割穿过它的磁力线就越快,所引起的磁通变化率就越大,产生的涡流越大,则制动力矩就越大;所以制动力矩和铝盘的转速n(转/秒)成正比,即
式中,k为一比例常数。由此说明,制动力矩是一个动态力矩,当铝盘不动时,制动力矩不存在。制动力矩是随铝盘的转动而产生的,并随转速增大而增大,其方向总是和铝盘的,转动方向相反。
当铝盘在转动力矩的作用下开始转动后,随着转速的增加,其制动力矩不断增加,直到制动力矩与转动力矩相平衡。此时,作用于铝盘的总力矩为零,铝盘的转速不再增加,而是稳定在一定的转速下。所以,按平衡条件MP = Mf,将式(6-1)和式(6-2)代入即得
kn = KP
即转速为
n = KP/k = CP (6-3)
式中C称为电度表的比例常数。
由此可见,电度表铝盘的转速和负载功率成正比。将式(6-3)两端同时乘以测量时间T,得:
nT = CPT = CW
式中nT为在测量时间内电度表铝盘的转数,以N表示,故被测负载在时间T内所消耗的电能为
W = N/C (6-4)
上式中,C=N/W(转/千瓦小时)表示电度表每一千瓦小时下铝盘的转数。即千瓦小时数。电度表常数C是电度表的一个重要参数,通常标注在电度表的铭牌上。
主要特性有:
(1) 准确度等级
(2) 负载范围
(3) 灵敏度
(4) 潜动
(5) 功率消耗等等。
当负载在额定电压下是空栽时,电度表铝盘应该静止不动。
当发现有功电度表反转时,可能是接线错误造成的,但不能认为凡是反转都是接线错误。下列情况下反转属正常现象:(a)装在联络盘上的电度表,当由一段母线向另一段母线输出电能时,电度表盘会反转。(b)当用两只电度表测定三相三线制负载的有功电能时,在电流与电压的相位差角大于60°,即cosΦ<0.5时,其中一个电度表会反转。
正确的读数:当电度表不经互感器而直接接入电路时,可以从电度表上直接读出实际电度数;如果电度表利用电流互感器或电压互感器扩大量程时,实际消耗电能应为电度表的读数乘以电流变比或电压变比。
图6-1、感应系电度表的结构示意图 图6-2、积算机构示意图
1、电流元件 2、电压元件 3、铝质圆盘 1、蜗杆 2、蜗轮 3—6、齿轮
4、转轴 5、永久磁铁 6、蜗轮蜗杆传动机构 7、滚轮
结构:
一般是由驱动部件、转动部分、制动部分以及积算机构等组成。结构如图6-1、图6-2所示。
全部0条评论
快来发表一下你的评论吧 !