人工智能
现代性与人类能力的机器替代
人工智能是现代工业文明发展的必然产物。早在“现代性”刚刚发端的时代,现代政治哲学的奠基者霍布斯,便开始把人和人类社会构想为当时最为精巧的机器——钟表。在《论公民》的“前言”中,他写道:“对于钟表或相当复杂的装置,除非将它拆开,分别研究其部件的材料、形状和运动,不然就无从知晓每个部件和齿轮的作用。同样,在研究国家的权利和公民的义务时,虽然不能将国家拆散,但也要分别考察它的成分,要正确地理解人性,它的哪些特点适合、哪些特点不适合建立国家,以及谋求共同发展的人必须怎样结合在一起。”1611年出现的“机械人”(Automaton)一词就是那个时代的社会想象的产物,它是指借用钟表齿轮技术而制造出来的自动机械人偶。虽然这种人偶还完全不具备任何意义上的“智能”,但它却体现了促使“人工智能”最终变成现实的那种思路:人的身体和大脑最终都可以用机器来模拟。
《省思——冷眼横看人工智能热》,杜运泉主编,上海财经大学出版社,2019年
到了19世纪,随着自然科学尤其是物理学的突破性发展,法国哲学家开始设想研究人类行为和人类社会组织方式的学科最终可以达到物理学那样的成熟状态。人们将可以通过观察、统计和分析而发现近似于自然规律的社会规律,从而“研究现状以便推断未来”。这就意味着不仅个人的身体和大脑功能可以借助物理学法则用机器来取代,而且社会的组织机制包括法律,最终也可以由机器来操作和管理。
在孔德的时代,由于技术手段的欠缺,孔德的野心还无法变为现实。基于有限样本的统计分析,还远远无法使社会预测达到物理预测那样的精准性。但大数据存储和分析已经使样本分析有可能为整全数据分析所取代,并且日益实现动态化和分析者与对象之间的互动化。换句话说,机器通过“深度学习”也可以变得具有社会性,并且参与人类社会的各种活动,包括游戏和工作。在孔德的时代,英文中又出现了Android(人形机器)一词,其词根是古希腊文中的andro(人)和eides(形状)。人是语言的动物,一个新语词的出现必然是因为新的事物出现在了人们的现实生活或想象之中,而它能够被普遍使用并成为语言的一部分,则是因为很多人都分享着它所表达的现实体验或想象。
在工业化时代,用机器来取代人的劳动已经成为一个普遍现实,马克思和恩格斯的经典著作中有许多对这种现实中工人阶级悲惨处境的描述,和对造成这种状态的生产关系和社会制度的批判。1920年,捷克作家卡雷尔·卡佩克(Karel Capek)创作了《罗素姆的万能机器人》(Rossumovi univerzální roboti)剧本,发明了如今通用的Robot(机器人)这个词汇,它的辞源是波兰语中的强迫劳动(Robota)和工人(Robotnik)。如果说工业化时代的机器(无论是不是人形的)所取代的只是人的一部分体力劳动,那么作为工业化升级版的人工智能则是这个过程的自然延伸,它旨在取代人的一部分脑力劳动。
人类一直在试图强化自己的能力。比如,过目不忘一直是中国传统文人最为欣赏和希望得到的能力之一。《三国演义》中的张松,在接过杨修递给他的《孟德新书》并快速浏览一遍之后,说这哪里是什么新书,分明是战国时无名氏所作,为曹丞相所抄袭。杨修不信,结果张松把该书内容背出,一字不差。但如今的人工智能已经能够轻松地做到这些,乃至更多。
人工智能实际上已经可以将脑力劳动和体力劳动、感知和思维、决策和执行结合到一起,从而更像是一个完整的人。至于是否具有“人形”已经不再重要了,任何关于“人工智能”的拟人化想象都是不必要的。有了物联网、大数据和云计算作为支撑(或组成部分)的人工智能,可以通过它的感官(遍布各处的传感器)获得千里之外的数据,利用自己无比强大的记忆力(联网计算机和云存储)来沉淀和消化数据,利用自己远胜于人类的计算能力(算法和基于“神经网络”技术的深度学习)来处理数据,并在此基础上作出判断和“决策”。
目前,人工智能正以惊人的速度在两大领域推进:一是“合成智能”(synthetic intellects),即我们通常所说的机器学习、神经网络、大数据、认知系统、演进算法等要素的综合应用。它不是传统意义上的编程,也就是说,它突破了“机器只能做程序员编排它去做的事情”这一局限,你只要给它一大堆人类穷其一生也无法浏览完的数据(在互联网的帮助下,这意味着你只要把它联网并通过编程使它具有搜索功能),包括人类智力根本无法理解的无结构数据,再设定某个具体的目标,最终系统会产生什么结果完全不可预见,不受创造者控制。围棋智能体AlphaGo先后打败李世石和柯洁,并以“独孤求败”的姿态“宣布退役”,只是合成智能小试牛刀的一个例子。
另一个领域是“人造劳动者”(forged labors),它们是传感器和执行器的结合,可以执行各种体力劳动任务,从海底采矿、外空维修到战场杀敌。当然,离我们生活最近的例子是自动驾驶。这两个领域的结合不仅意味着“机器人”的“头脑”和“四肢”都是很强大的,还意味着“机器人”的大脑、感官和手足是可以分离的,手脚(执行器)可以延伸到离大脑(中央处理器)十万八千里的地方。在“万物联网”的时代,只有不联网的东西才不在人工智能的可控制范围之内。
正因为如此,越来越多的人开始表示出对“人工智能”的担忧。乐观派认为人工智能是对人类能力的强化,它本身仍然处在人类的控制之下,因为它没有“自我意识”和情感。没有我执,也便没有“贪、嗔、痴”,不会对人类构成威胁。甚至不能算是真正的智能,因为智能的内核是“主体的自由”以及主体对这种自由的自我认知和主动应用。但即使我们承认乐观派对事实的描述和判断是正确的,也已经有了担心的由头。
人工智能显然不成比例地强化了一部分人的能力,即那些站在人工智能发展前沿的“大数据掌控者”和人工智能开发企业的能力,同时使越来越多的人变成难以保护自己的隐私和自由并面临失业风险的弱者。换句话说,以前可以自认为比蓝领工人社会等级更高的白领脑力劳动者,如今也变成了新的随时可能被机器所替代的劳工。当强弱悬殊越来越大,而且强者对弱者的剥削和控制越来越以“物理法则”而不是赤裸裸的暴力面目出现时,“强者为所能为,弱者受所必受”的局面就会成为普遍现象。自由与必然之间的关系,因人工智能的出现而越发成了一个由社会分层(阶级)决定的事务:越来越少的人享有越来越大的自由,越来越多的人受到越来越强的必然性的束缚。
由于法治迄今为止被证明是保护弱者权益、使人避免落入弱肉强食的丛林法则支配的最有效机制,所以,当人工智能所带来的新风险被许多人感知到的时候,人们自然希望法律能够因应这种风险提供新的保障。但法律自身也面临着人工智能的猛烈冲击。
人工智能对法律应对社会变迁的传统模式的挑战
法律是人的有限理性的产物,法律规则本身也体现并顺应着人的局限性。正如麦迪逊所言:“如果人都是天使,就不需要任何政府了。如果是天使统治人,就不需要对政府有任何外来的或内在的控制了。”这个说法当然针对的是人的贪婪和野心,但也拓展到人的有限认知和计算能力。即使一个人充满善意,他也可能因为自己的能力所限而对自己和他人造成伤害。而法律规则的设计和执行,都会把这种有限能力纳入考虑。实际上,人类社会所有的规则,包括游戏规则,都是有局限的人为有局限的人设计的。
下过围棋的人都知道“金角银边草肚皮”这个基本的布局规则,这个规则的理由有两个:一是效率,在角上无论是做眼还是吃掉对方棋子需要的步数都最少,在角上,做一个真眼需要三步棋,吃掉对方一个子只需要两步棋。二是计算能力,给定的边界越多,需要考虑的可能性越少。效率考量使得AlphaGo在布局阶段与人类高手相比并没有太大的区别,仍然是先占角后取边。但在序盘和中盘阶段,AlphaGo却更敢于向中腹突进,这是与它更强大的计算能力相适应的。
实际上,由于人认识到自己的局限性,所以在设计规则的时候所考虑的都是所谓常人标准,即以具有中等智力和体力水平的正常人作为规则可行性的判断标准。而且,为了形成稳定的社会秩序,法律往往还会设置比常人标准更低一些的安全线。从这个意义上讲,法律是一种保守的社会力量,不以满足具有创新精神和创新能力的人士追求“更快、更高、更好”的野心为目的。梁漱溟先生所说的“经济进一步,政治进一步,循环推进”,也适用于法律。法律调整经济-社会关系的方式从来都是回应性的。在技术发展和社会-经济结构变化缓慢的农业社会和早期工业化社会,这种保守倾向使法律发挥了很好的维持社会稳定的作用。
但在人工智能时代,它却使法律滞后于技术和经济的发展,使那些把握先机的人获得了巨大的边际回报。比如,互联网金融和电子商务在中国的迅猛发展就是在相关法律缺位的情况下发生的,等到立法者开始制定规则来规范这个领域,法律所约束的只是后来者,并且自然地巩固了先占者的垄断地位。同时,先占者又利用已经积累起来的经济、技术和资源(数据)优势,开始抢占未被法律规制的新领域。如此层层递进,最终使得循规蹈矩、永远在法律规定的范围内活动的人们与他们之间的差距越来越大。
同时,正如石油是工业化时代最宝贵的资源一样,数据是人工智能时代最重要的资源。掌控的数据越多,供人工智能“学习”的资源就越多,也就越容易在这个领域取得突破性的进展。这一事实导致了这样几个结果:
第一,它使个人的隐私和自由变得非常脆弱。这一点我已经在此前的一篇文章中做了详细分析,这里不再赘述。
第二,它使得传统制造业和其他与互联网没有直接关联的行业处在很明显的劣势。因为人工智能不是一个传统意义上的新“行业”,也不是一种覆盖人类生活全部领域的技术。最早进入互联网领域的企业因其行业特性而自然成了“大数据掌控者”,而人工智能对大数据的依赖又使得它们自然成了人工智能领域的先驱,进而,它们又可以利用自己在人工智能方面的优势介入所有传统行业,包括农业。
比如,通过在农作物上安装生物传感器来获得比实验室作业更加直接和可靠的植物生长数据,从而获得农业科技方面的突破。实际上,这并不是一种假设,而是谷歌和阿里巴巴等公司正在做的事情,“精准农业定点解决方案”(Precision Agriculture Point Solutions)和“植物云”等概念都对应着某种特定的商业模式。无论是政府还是社会对这种新生事物都有一种好奇和乐见其成的心态,希望看到结果后再采取行动,而当结果发生时,且不论它本身是好是坏,这些大数据掌控者全方位的优势必然已经形成。
来源:观察者网
全部0条评论
快来发表一下你的评论吧 !