Knative 实战:基于 Knative Serverless 技术实现天气服务

今日头条

1146人已加入

描述

提到天气预报服务,我们第一反应是很简单的一个服务啊,目前网上有大把的天气预报 API 可以直接使用,有必要去使用 Knative 搞一套吗?杀鸡用牛刀?先不要着急,我们先看一下实际的几个场景需求:

场景需求1:根据当地历年的天气信息,预测明年大致的高温到来的时间

场景需求2:近来天气多变,如果明天下雨,能否在早上上班前,给我一个带伞提醒通知

场景需求3:领导发话:最近经济不景气,公司财务紧张,那个服务器,你们提供天气、路况等服务的那几个小程序一起用吧,但要保证正常提供服务。

从上面的需求,我们其实发现,要做好一个天气预报的服务,也面临内忧(资源紧缺)外患(需求增加),并不是那么简单的。不过现在更不要着急,我们可以使用 Knative 帮你解决上面的问题。

关键词:天气查询、表格存储,通道服务,事件通知

场景需求

首先我们来描述一下我们要做的天气服务场景需求:

1. 提供对外的天气预报 RESTful API

根据城市、日期查询(支持未来 3 天)国内城市天气信息

不限制查询次数,支持较大并发查询(1000)

2. 天气订阅提醒

订阅国内城市天气信息,根据实际订阅城市区域,提醒明天下雨带伞

使用钉钉进行通知

整体架构

有了需求,那我们就开始如何基于 Knative 实现天气服务。我们先看一下整体架构:

serverless

通过 CronJob 事件源,每隔 3个 小时定时发送定时事件,将国内城市未来3天的天气信息,存储更新到表格存储

提供 RESTful API 查询天气信息

通过表格存储提供的通道服务,实现 TableStore 事件源

通过 Borker/Trigger 事件驱动模型,订阅目标城市天气信息

根据订阅收到的天气信息进行钉钉消息通知。如明天下雨,提示带伞等

提供对外的天气预报 RESTful API

对接高德开放平台天气预报 API

查询天气的 API 有很多,这里我们选择高德开放平台提供的天气查询 API,使用简单、服务稳定,并且该天气预报 API 每天提供 100000 免费的调用量,支持国内 3500 多个区域的天气信息查询。另外高德开放平台,除了天气预报,还可以提供 ip 定位、搜索服务、路径规划等,感兴趣的也可以研究一下玩法。 登录高德开放平台: https://lbs.amap.com, 创建应用,获取 Key 即可:

serverless

获取Key之后,可以直接通过url访问:https://restapi.amap.com/v3/weather/weatherInfo?city=110101&extensions=all&key=<用户key>,返回天气信息数据如下:

{     "status":"1",     "count":"1",     "info":"OK",     "infocode":"10000",     "forecasts":[         {             "city":"杭州市",             "adcode":"330100",             "province":"浙江",             "reporttime":"2019-09-24 20:49:27",             "casts":[                 {                     "date":"2019-09-24",                     "week":"2",                     "dayweather":"晴",                     "nightweather":"多云",                     "daytemp":"29",                     "nighttemp":"17",                     "daywind":"无风向",                     "nightwind":"无风向",                     "daypower":"≤3",                     "nightpower":"≤3"                 },                 ...             ]         }     ] }

定时同步并更新天气信息

同步并更新天气信息

该功能主要实现对接高德开放平台天气预报 API, 获取天气预报信息,同时对接阿里云表格存储服务(TableStore),用于天气预报数据存储。具体操作如下:

接收 CloudEvent 定时事件

查询各个区域天气信息

将天气信息存储或者更新到表格存储

在 Knative 中,我们可以直接创建服务如下:

apiVersion: serving.knative.dev/v1alpha1 kind: Service metadata:   name: weather-store   namespace: default spec:   template:     metadata:       labels:         app: weather-store       annotations:         autoscaling.knative.dev/maxScale: "20"         autoscaling.knative.dev/target: "100"     spec:       containers:         - image: registry.cn-hangzhou.aliyuncs.com/knative-sample/weather-store:1.2           ports:             - name: http1               containerPort: 8080           env:           - name: OTS_TEST_ENDPOINT             value: http://xxx.cn-hangzhou.ots.aliyuncs.com           - name: TABLE_NAME             value: weather           - name: OTS_TEST_INSTANCENAME             value: ${xxx}            - name: OTS_TEST_KEYID             value: ${yyy}           - name: OTS_TEST_SECRET             value: ${Pxxx}           - name: WEATHER_API_KEY             value: xxx

关于服务具体实现参见 GitHub 源代码:https://github.com/knative-sample/weather-store

创建定时事件

这里或许有疑问:为什么不在服务中直接进行定时轮询,非要通过 Knative Eventing 搞一个定时事件触发执行调用?那我们要说明一下,Serverless 时代下就该这样玩-按需使用。千万不要在服务中按照传统的方式空跑这些定时任务,亲,这是在持续浪费计算资源。 言归正传,下面我们使用 Knative Eventing 自带的定时任务数据源(CronJobSource),触发定时同步事件。 创建 CronJobSource 资源,实现每 3 个小时定时触发同步天气服务(weather-store),WeatherCronJob.yaml 如下:

apiVersion: sources.eventing.knative.dev/v1alpha1 kind: CronJobSource metadata:   name: weather-cronjob spec:   schedule: "0 */3 * * *"   data: '{"message": "sync"}'   sink:     apiVersion: serving.knative.dev/v1alpha1     kind: Service     name: weather-store

执行命令:

kubectl apply -f WeatherCronJob.yaml

现在我们登录阿里云表格存储服务,可以看到天气预报数据已经按照城市、日期的格式同步进来了。

serverless

提供天气预报查询 RESTful API

有了这些天气数据,可以随心所欲的提供属于我们自己的天气预报服务了(感觉像是承包了一块地,我们来当地主),这里没什么难点,从表格存储中查询对应的天气数据,按照返回的数据格式进行封装即可。 在 Knative 中,我们可以部署 RESTful API 服务如下:

apiVersion: serving.knative.dev/v1alpha1 kind: Service metadata:   name: weather-service   namespace: default spec:   template:     metadata:       labels:         app: weather-service       annotations:         autoscaling.knative.dev/maxScale: "20"         autoscaling.knative.dev/target: "100"     spec:       containers:         - image: registry.cn-hangzhou.aliyuncs.com/knative-sample/weather-service:1.1           ports:             - name: http1               containerPort: 8080           env:           - name: OTS_TEST_ENDPOINT             value: http://xxx.cn-hangzhou.ots.aliyuncs.com           - name: TABLE_NAME             value: weather           - name: OTS_TEST_INSTANCENAME             value: ${xxx}            - name: OTS_TEST_KEYID             value: ${yyy}           - name: OTS_TEST_SECRET             value: ${Pxxx}

具体实现源代码 GitHub 地址:https://github.com/knative-sample/weather-service查询天气 RESTful API:

请求URL GET /api/weather/query

参数: cityCode:城市区域代码。如北京市区域代码:110000 date:查询日期。如格式:2019-09-26

返回结果

{     "code":200,     "message":"",     "data":{         "adcode":"110000",         "city":"北京市",         "date":"2019-09-26",         "daypower":"≤3",         "daytemp":"30",         "dayweather":"晴",         "daywind":"东南",         "nightpower":"≤3",         "nighttemp":"15",         "nightweather":"晴",         "nightwind":"东南",         "province":"北京",         "reporttime":"2019-09-25 14:50:46",         "week":"4"     } }

查询:杭州,2019-09-26天气预报信息示例 测试地址:http://weather-service.default.knative.kuberun.com/api/weather/query?cityCode=330100&date=2019-11-06另外城市区域代码表可以在上面提供的源代码 GitHub 中可以查看,也可以到高德开放平台中下载:https://lbs.amap.com/api/webservice/download

天气订阅提醒

首先我们介绍一下表格存储提供的通道服务。通道服务(Tunnel Service)是基于表格存储数据接口之上的全增量一体化服务。通道服务为您提供了增量、全量、增量加全量三种类型的分布式数据实时消费通道。通过为数据表建立数据通道,您可以简单地实现对表中历史存量和新增数据的消费处理。通过数据通道可以进行数据同步、事件驱动、流式数据处理以及数据搬迁。这里事件驱动正好契合我们的场景。

自定义 TableStore 事件源

在 Knative 中自定义事件源其实很容易,可以参考官方提供的自定义事件源的实例:https://github.com/knative/docs/tree/master/docs/eventing/samples/writing-a-source。 我们这里定义数据源为 AliTablestoreSource。代码实现主要分为两部分:

资源控制器-Controller:接收 AliTablestoreSource 资源,在通道服务中创建 Tunnel。

事件接收器-Receiver:通过 Tunnel Client 监听事件,并将接收到的事件发送到目标服务( Broker)

关于自定义 TableStore 事件源实现参见 GitHub 源代码:https://github.com/knative-sample/tablestore-source

部署自定义事件源服务如下: 从 https://github.com/knative-sample/tablestore-source/tree/master/config 中可以获取事件源部署文件,执行下面的操作

kubectl apply -f 200-serviceaccount.yaml -f 201-clusterrole.yaml -f 202-clusterrolebinding.yaml -f 300-alitablestoresource.yaml -f 400-controller-service.yaml -f 500-controller.yaml -f 600-istioegress.yaml

部署完成之后,我们可以看资源控制器已经开始运行:

[root@iZ8vb5wa3qv1gwrgb3lxqpZ config]# kubectl -n knative-sources get pods NAME                                 READY   STATUS    RESTARTS   AGE alitablestore-controller-manager-0   1/1     Running   0          4h12m

创建事件源

由于我们是通过 Knative Eventing 中 Broker/Trigger 事件驱动模型对天气事件进行处理。首先我们创建用于数据接收的 Broker 服务。

创建 Broker

apiVersion: eventing.knative.dev/v1alpha1 kind: Broker metadata:   name: weather spec:   channelTemplateSpec:     apiVersion: messaging.knative.dev/v1alpha1     kind: InMemoryChannel

创建事件源实例

这里需要说明一下,创建事件源实例其实就是在表格存储中创建通道服务,那么就需要配置访问通道服务的地址、accessKeyId和accessKeySecret,这里参照格式:{ "url":"https://xxx.cn-beijing.ots.aliyuncs.com/", "accessKeyId":"xxxx","accessKeySecret":"xxxx" } 设置并进行base64编码。将结果设置到如下 Secret 配置文件alitablestore 属性中:

apiVersion: v1 kind: Secret metadata:   name: alitablestore-secret type: Opaque data:   # { "url":"https://xxx.cn-beijing.ots.aliyuncs.com/", "accessKeyId":"xxxx","accessKeySecret":"xxxx" }   alitablestore: ""

创建 RBAC 权限

apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRoleBinding metadata:   name: eventing-sources-alitablestore subjects: - kind: ServiceAccount   name: alitablestore-sa   namespace: default roleRef:   apiGroup: rbac.authorization.k8s.io   kind: ClusterRole   name: eventing-sources-alitablestore-controller --- apiVersion: v1 kind: ServiceAccount metadata:   name: alitablestore-sa secrets: - name: alitablestore-secret

创建 AliTablestoreSource 实例,这里我们设置接收事件的 sink 为上面创建的 Broker 服务。

--- apiVersion: sources.eventing.knative.dev/v1alpha1 kind: AliTablestoreSource metadata:   labels:     controller-tools.k8s.io: "1.0"   name: alitablestoresource spec:   # Add fields here   serviceAccountName: alitablestore-sa   accessToken:     secretKeyRef:       name: alitablestore-secret       key: alitablestore   tableName: weather   instance: knative-weather   sink:     apiVersion: eventing.knative.dev/v1alpha1     kind: Broker     name: weather

创建完成之后,我们可以看到运行中的事件源:

[root@iZ8vb5wa3qv1gwrgb3lxqpZ config]# kubectl get pods NAME                                                              READY   STATUS      RESTARTS   AGE tablestore-alitablestoresource-9sjqx-656c5bf84b-pbhvw             1/1     Running     0          4h9m

订阅事件和通知提醒

创建天气提醒服务

如何进行钉钉通知呢,我们可以创建一个钉钉的群组(可以把家里人组成一个钉钉群,天气异常时,给家人一个提醒),添加群机器人:

获取 webhook :

serverless

这里我们假设北京(110000),日期:2019-10-13, 如果天气有雨,就通过钉钉发送通知提醒,则服务配置如下:

apiVersion: serving.knative.dev/v1beta1 kind: Service metadata:   name: day-weather spec:   template:     spec:       containers:       - args:         - --dingtalkurl=https://oapi.dingtalk.com/robot/send?access_token=xxxxxx         - --adcode=110000         - --date=2019-10-13         - --dayweather=雨         image: registry.cn-hangzhou.aliyuncs.com/knative-sample/dingtalk-weather-service:1.2

关于钉钉提醒服务具体实现参见 GitHub 源代码:https://github.com/knative-sample/dingtalk-weather-service

创建订阅

最后我们创建 Trigger订阅天气事件,并且触发天气提醒服务:

apiVersion: eventing.knative.dev/v1alpha1 kind: Trigger metadata:   name: weather-trigger spec:   broker: weather   subscriber:     ref:       apiVersion: serving.knative.dev/v1alpha1       kind: Service       name: day-weather

订阅之后,如果北京(110000),日期:2019-10-13, 天气有雨,会收到如下的钉钉提醒:

这里其实还有待完善的地方:

是否可以基于城市进行订阅(只订阅目标城市)?

是否可以指定时间发送消息提醒(当天晚上 8 点准时推送第 2 天的天气提醒信息)?

有兴趣的可以继续完善当前的天气服务功能。

总结

通过上面的介绍,大家对如何通过 Knative 提供天气查询、 订阅天气信息,钉钉推送通知提醒应该有了更多的体感,其实类似的场景我们有理由相信通过 Knative Serverless 可以帮你做到资源利用游刃有余。欢迎持续关注。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分