高电子迁移率晶体管在通信行业的应用

电子说

1.3w人已加入

描述

1977年在日本厚木的富士通实验室担任电子工程师时,IEEE终身Fellow三村隆史(Takashi Mimura)开始研究如何更快地制作金属氧化物半导体场效应晶体管。1966年发明的MOSFET是当时当时最快的晶体管,但Mimura和其他工程师希望通过增强电子迁移率(使电子能够快速移动通过半导体材料)来使其变得更快。

富士通的Syoshi Hiyamizu(左)和IEEE研究员三村隆史(Takashi Mimura)测试了第一个高电子迁移率晶体管。右边是第一个商用HEMT。

Mimura开始研究替代MOSFET中所用硅的替代半导体,他希望这会是解决方案.但是在研究过程中,他无意中发现在《Applied Physics Letters 》上有一篇贝尔实验室文章发表的文章,里面谈到异质结超晶格(heterojunction superlattices)——一个有着显著不同的两种或更多种半导体结构的超晶格,其使用的调制掺杂技术(modulation-doping )以在空间上分开传导电子和带隙以开发他们的母体施主杂质原子。 这激发了Mimura创造了一个新的晶体管——HEMT。

1979年,他发明了高电子迁移率晶体管。他的HEMT使用异质结超晶格来增强电子迁移率,从而提高了速度和性能。现在,本发明为手机,卫星电视接收机和雷达设备供电。

据介绍,HEMT由半导体薄层(n型砷化镓和铝砷化镓)以及异质结超晶格组成;它具有自对准的离子注入结构和凹槽门结构。在n型砷化镓(高度掺杂的窄带隙)和铝砷化镓(非掺杂的窄带隙)的层之间形成用作二极管的超晶格。使用不同的带隙材料会在超晶格中形成量子阱。阱使电子快速移动而不会与杂质碰撞。

而自对准的离子注入结构由漏极,栅极和源极组成,它们位于n型砷化镓第二层(凹入栅结构)的顶部。电子源自源极,流经半导体和异质结超晶格进入漏极。栅极控制漏极和源极之间的电流。

在厚木富士通实验室底层的展览室里,有一块纪念碑写道:

HEMT是第一个在两种具有不同能隙的半导体材料之间结合界面的晶体管。 HEMT由于其高迁移率的沟道载流子而被证明优于以前的晶体管技术,从而具有高速和高频性能。 它们已广泛用于射电望远镜,卫星广播接收器和蜂窝基站,成为支持信息和通信社会的一项基本技术。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分