控制/MCU
从医疗领域的血糖、血压和血氧饱和度监控器,到楼宇自动化中使用的温度和烟雾探测器,再到楼宇安全中使用的电子锁,无线微控制器在监控和连接领域发挥着至关重要的作用。
无线MCU和无线网络对于整个数据的迁移起到了至关重要吗,通过互联的物联网(IoT)设备桥接最后一英里数据的能力是MCU重要组成部分。
系统设计需要石英晶体的时钟,无线连接应用中的分立时钟和石英晶体可能相对昂贵、耗时且开发复杂,并且在工厂自动化或汽车应用中经常容易受到环境压力的影响。
一种称为体声波(BAW)的新技术正在使MCU时钟开发变得简单,也使更小的MCU设计成为可能,同时又提高了整体性能并降低了成本。
如图1所示(下图),BAW由夹在两个电极之间的压电材料组成,该压电材料将电能转换为机械声能,反之亦然。压电材料的机械共振为系统生成时钟。
图1:BAW压电材料。
德州仪器(TI)的SimpleLink CC2652RB MCU在无线MCU封装中集成了BAW技术,从而消除了对外部晶振的需求,外部石英晶体的设计成本高,体积大且耗时。无石英解决方案所节省的空间对于许多新兴应用(例如医疗物联网设备)至关重要。
与外部晶振MCU解决方案相比,SimpleLink C2652RB还显示出对各种加速力和机械冲击的抵抗能力。
BAW技术如何抵抗机械冲击和振动
测量振动和冲击的两个重要参数是应用于物联网连接设备的加速度和振动频率。您会在任何地方找到振动源:行驶中的车辆;设备中的冷却风扇;甚至手持无线设备。时钟解决方案必须提供稳定的时钟,并具有强大的抵抗加速力,振动和冲击的能力,这一点很重要,因为这可以确保在过程和温度变化的整个产品生命周期中保持稳定性。
振动和机械冲击会通过引起噪声和频率漂移来影响谐振器,从而随着时间的推移降低系统性能。在参考振荡器中,振动和冲击是引起相位噪声和抖动,频率偏移和尖峰甚至谐振器及其封装物理损坏的常见原因。通常,外部干扰会通过封装耦合到微谐振器,并降低整体时钟性能。
对于任何无线设备而言,最关键的性能指标之一是保持发送器和接收器之间的链接并防止数据丢失。BAW技术可为在恶劣环境下运行的IoT产品提供显着的性能优势。由于BAW技术可确保稳定的数据传输,因此通过有线和无线信号进行的数据同步更加精确,并使连续传输成为可能,这意味着可以快速,无缝地处理数据以最大化效率。
以高行业标准评估BAW技术
TI已根据相关的军事标准对CC2652RB进行了全面测试,因为许多MCU在容易受到冲击和振动的环境中运行,例如工厂和汽车。军用标准MIL-STD-883H中有专门测试石英晶振的评估。该标准为了测量半导体器件突然遭受外力后是否稳定,加速度峰值为1500 g。这种冲击可能会干扰运行特性或造成类似于过度振动导致的损坏,尤其是在冲击脉冲重复的情况下。
图2显示了MIL-STD-883H的机械冲击测试设置,而图3显示了CC2652RB与外部晶体解决方案相比的频率变化。您可以看到最大频率偏差约为2 ppm,而外部晶振在2.44 GHz时约为7 ppm。
图2:机械冲击测试设置和测试设置框图。
图3:比较由BAW和晶体器件上的机械冲击引起的最大频率偏差(2.44 GHz)(百万分之一)。
结论
BAW技术通过减少某些关键设备(例如医疗领域中的设备)所需的空间量,并支持更大的冲击力,从而代表了IoT发展的一个方向。相信BAW技术将成为跨众多领域物联网的催化剂之一。
全部0条评论
快来发表一下你的评论吧 !