设计测试
图1 串联模式示意图 图1 并联模式示意图
1)串联模式
在串联模式下,由于电压相加(或相减),最大电流由设定值最小的电源设备决定,因而此时所有设备的电流都相等。
2)并联模式
为了提高输出的总电流大小,可采取并联方式。此时所有设备的输出电压都相同,大小由额定输出电压最低的电源设备决定,总电流为各并联支路的电流之和。
如果所采用的电源设备规格相同,则在并联时请检查各电源设备上分配的电流是否平均,由于并联时流过各电源设备的电流大小相同,如果使用了其他类型的电源设备,在没有过载保护的条件下,此类电压可能会被电流损坏。
2.限流和电子保险丝
限流功能是大多数可编程任意电源均具备的一项功能,限流指允许不超过最大设定电流的电流通过,限流调整需要在使用测试电路之前完成,以避免由于短路等故障损坏电路。
如图3所示,在电压调节范围内,电压Vout保持不变,而电流可能升高到最大值Imax。当达到该值时,电压调节将变为电流调节,即使负载增加,最大电流仍然保持不变。相反,在发生短路时,输出电压Vout将会减小至零,而电流仍然保持恒定并处于Imax以内。因此,电源设备同时也是电流源设备,可使调整电流保持恒定。我们建议在连接被测电路之前,首先设定最大电流,以避免产生损坏。
图3 电压、电流调节示意图
为了更好的保护敏感性负载,有些电源设备除了限流功能外,还都配备了电子保险丝,一旦电流达到Imax值,电路将以极快的速度断开输出,切断电流。
可编程任意电源的更多功能
1、跟踪功能
在某些可编程任意电源中,有一种通道间联动的功能,即跟踪功能。跟踪功能指所有的输出同时被控制,并且通过保持电压与事先设定的电压一致,使它们都服从统一指挥。例如:如果电压1从10V变为12V,则电压2和3将随之从5V变为6V,电压4随之从20V变为24V。
但是,如果其中一个处于领导位置的输出的最大电流存在极限值,而且输出电流达到该极限值时,则所有其他处于从属地位的输出电流也同时进入限流状态。如果设备中安装了电子保险丝,则到达该极限值的输出将被断开,进而其他处于从属位置的输出也全部被断开。
2、感应(SENSE)模式——补偿导线本身电阻
在普通模式下,电压通过导线直接加载在负载上,从而保持负载电压的稳定。由于负载电流会在连接导线上产生压降,因而实际负载电压应等于电源输出电压减去该压降。
Vload = Vout - Vcable(1)
Vcable = Iload × Rcable(2)
在一些输出为低电压、大电流的场合,电源的输出连接导线上形成的压降已不能忽略。如电源设定输出为3.3V/1A,假设输出线的电阻是0.3欧,就会在导线上形成0.3V的压降,那么实际到达的电压变为3.0V,这足以导致被供电的单元不能正常工作。类似于万用表测电阻时的四线测量法,我们需要对导线压降进行补偿。为此,可使用SENSE端子直接测量负载两端电压(如图4所示)。由于SENSE导线中的电流很小,因而产生的电压降可以忽略,即电源设备感应的电压实际上就是真正的负载电压,这样电源设备将提高自己的输出,使其等于导线压降和所需负载电压之和,从而实现对于导线压降的补偿,使负载真正获得所设定电压值。另外,有些电源加入了回读功能也是为了补偿导线本身电阻。
图4 感应(SENSE)模式示意图
3、任意波形电源
有些可编程任意电源有任意波形编辑功能,即产生随时间变化的波形,例如德国惠美公司的HM8143,它相当于一台固定点数(如1024点)的任意波形发生器,即由固定对电压与时间间隔参数、列表对应产生,可生成低频范围内用户可自定义的波形,这个信号的频率由每个点之间的时间间隔确定。如图5所示。任意信号以数字形式生成,而且定义起来相当简单。通常,一个任意波形信号可包括各种大小不同的振幅,经过逐个处理后可以生成周期性重复波形。这些编程波形可以是单脉冲,也可以是重复连续的波形。编程输出电压,也可被外调制。信号在仪器规格允许的范围内可被自由定义,并可存储于仪器中。此类信号可通过RS-232、IEEE-488或者USB接口进行定义。
4、调制
某些可编程任意电源有外部调制功能,利用后面板上的端子,可对两组输出进行调制。例如,德国惠美公司的HM8143,高达1V/μs的调制斜率和在任意模式下100μs最小脉冲宽度允许生成复杂的负载特征。无论功率大小,线性输出组件的失真度都非常低,以便于进行外部调制。如图6所示。
图5 任意波形编辑功能 图6 外调制功能
全部0条评论
快来发表一下你的评论吧 !