嵌入式设计应用
Trends in High-Performance Power-Supply Design for Automotive Infotainment
Abstract: This article provides a practical framework for selecting and optimizing power-supply architectures for automotive infotainment electronics. First, a summary of design constraints and application requirements is provided. Then, the most popular power-supply architectures are discussed within the context of the application requirements. Finally, a selection of Maxim automotive power-management ICs (PMICs) is presented as building blocks of the power-supply architectures explored in the article.
More than half of the 2012 model year cars in the EU, Japan, and U.S. will feature a color screen, a navigation system, satellite radio, or some other form of in-car infotainment. Consequently, the automotive power supplies in year 2012 will look significantly different than their predecessors a decade earlier.
The conflicting expectations of high reliability, lower cost, and faster design cycles have forced power-supply designers to adopt techniques not previously used in a typical automotive power supply.
Most automotive power-supply architectures are shaped by six generic constraints:
The most basic system power-supply architecture should start with a survey of application voltage requirements and battery transient conditions specified by car manufacturers. The current requirements then should be mapped to heat dissipation restrictions on the board. Table 2 summarizes the most frequently designed electronic circuits and the voltage requirements.
Table 2. Common Power-Supply Circuits and Voltage Requirements¹
Application Input Voltages | Application State vs. VBATT | |||||||||||
Location of Power Supply | Application | > 5.5V | 5V | 3.3V | 2.5V | 1.8V | 1.2V | 1V | ON— Key Off? | ON—ECORUN | ON— Cold Crank? | ON— Load dump? |
Remote | Antenna | ON; EU only | NO reset | |||||||||
Main | CD-drive | Survive | ||||||||||
Main | CDC (changer) | Survive | ||||||||||
Module | Radio tuner | ON; EU only | Survive | |||||||||
Main | General µC | ON; EU only | NO reset | |||||||||
Main | HDD | NO | Survive | |||||||||
Main | CAN | ON | NO reset | |||||||||
Main | USB | NO | ||||||||||
Main | RTC | ON | NO | |||||||||
Both | LVDS | ON; EU only | NO | |||||||||
Both | DSP | ON; EU only | Survive | |||||||||
Both | SRAM | ON; EU only | Survive | |||||||||
Both | Flash | Survive | ||||||||||
Both | FPGA | Survive | ||||||||||
Module | Audio µC | Survive | ||||||||||
Module | CODEC | Survive | ||||||||||
Module | LCD | ON; EU only | Survive | |||||||||
Module | GPS | ON; EU only | Survive | |||||||||
Module | TV tuner | Survive | ||||||||||
Module | DAB | Survive | ||||||||||
Module | SDARS | Survive | ||||||||||
Module | Data comm. | NO reset |
Figure 3. Architectural options for a power supply. Reg1: 8V (CD/DVD drive); Reg2: 5V (µC); Reg3: 3.3V (µC); Reg4: 2.5V/1.8V (DSP); Reg5: 1.2V (memory).
Just like its digital CMOS cousin, the analog BiCMOS processes also strive to minimize design geometry to achieve shrinkage. This relationship brings the best return on investment and lowers process development risks. Nonetheless, the process optimization choices do not necessarily match the needs of common automotive applications. For example, while 5.5V to 6V input devices are optimized for cost in most processes, the 9V to 10V input devices either do not exist or are not optimized for cost. This is why there are restrictions for how you can generate an intermediary power rail to cascade lower voltage rails.
The four topologies suggested in this section summarize our worldwide application design experience over the last three years. While there may be many more and different ways of achieving the objective, most solutions can be reduced to one of these four topologies.
This topology maximizes the flexibility to optimize DC-DC conversion efficiency, location, heat distribution on the PCB, and noise. The principal advantages of Option1 are:
Alternatively, one should note that Option 1 typically has a larger footprint, is more expensive, and is too complicated for designs with many power rails.
This option is a popular compromise between higher integration and design flexibility. Typically the cost, footprint, and complexity with this approach are more optimal than Option 1.
This option is especially ideal for generating two step-down rails that need to be independently controlled. For example, an always-on 3.3V rail and a 5V rail that may be turned off can be generated using the same IC to save IQ. Another example is to generate an intermediary power rail, such as 5V, to supply lower voltage converters while avoiding boost circuitry to generate an 8V rail.
For dual-output regulators with external FET drivers, the heat distribution on the PCB is as flexible as Option 1. With internal FET converters, however, the concentration of heat dissipation at a particular point on the PCB can be restrictive depending on the current level required from the regulator output.
This topology reduces the multiple-rail high-voltage conversion problem down to one high-voltage front-end and a highly integrated low-voltage, high-integration IC.
This approach simplifies the power-supply design and facilitates many alternative solutions from many different vendors. Also, low-voltage high-integration ICs are less expensive than multiple high-voltage ICs.
If the low-voltage PMIC of the Option 3 has more than two outputs, all the pitfalls of Option 4 are also present in Option 3.
The main disadvantage of Option3 is the many power rails concentrated at one place. This layout requires the design to manage heat dissipation on the PCB.
All-in-one, high-integration PMICs can result in significantly better tradeoff among power-supply design constraints. There are, however, many pitfalls in high integration as well.
Maxim's automotive power-supply IC family provides unique high-performance solutions to hard-to-solve power-management problems. The power product family includes building blocks such as overvoltage and undervoltage protectors, microcontroller supervisors, switching and linear converters, and high-integration multifunction PMICs that meet the requirements of infotainment electronics design.
Maxim holds TS16949 (Automotive Quality Standard) certification and manufactures most of its parts in company-owned fabs. Maxim automotive operation has dedicated quality assurance, customer service, local sales and application support, and IC design resources to meet demands of the automotive market.
Maxim's power-supply ICs also address automotive specific quality or manufacturing needs such as AECQ100 qualification, DFMEA, different temperature grades (85°C, 105°C, 125°C, etc), special packaging (exposed leads or QFN, exposed pads or nonexposed pad).
Figure 4. Automotive power-management IC categories. For full selection of Automotive power solutions please refer to www.maxim-ic.com/Automotive.
Figure 5. The MAX15004/MAX15005 automotive VFD power supplies operate down to a 2.5V input voltage after startup and includes output overvoltage protection for VFDs.
The MAX15004/MAX15005 are versatile current-mode PWM controllers that can be configured as boost, flyback, forward, and SEPIC converters. The ICs operate over the 4.5V to 40V input voltage range with an adjustable switching frequency from 15kHz to 500kHz. The ICs can also be synchronized to an external clock.
The current-mode control architecture offers excellent line-transient response and cycle-by-cycle current limit, while simplifying the frequency compensation. Programmable slope compensation simplifies the design further. A fast 60ns current-limit response time and low 300mV current-limit threshold make the controllers suitable for high-efficiency, high-frequency DC-DC converters. The devices include an internal error amplifier and 1% accurate reference to facilitate the primary-side regulated, single-ended flyback converter or nonisolated converters.
Protection features include cycle-by-cycle and hiccup current limit, output overvoltage protection, and thermal shutdown. The MAX15004/MAX15005 are available in a 16-pin TSSOP package with exposed pad and no exposed pad versions. All devices operate over the -40°C to +125°C automotive temperature range.
Figure 6. The MAX1744/MAX1745 are high-voltage (36V) step-down DC-DC controllers.
The MAX1744 is a single-output, automotive-grade switching regulator that withstands transients from 4.5V to 36V. The device uses a proprietary current-limited control scheme for excellent light and full load efficiency. It delivers more than 50W of output power without requiring a heatsink. The MAX1745 consumes only 4µA during shutdown and 90µA during a light load. The IC is fully specified for +125°C operation and is available in a 3mm x 3mm, 16-pin µMAX® package, which has exposed leads and no exposed pads. MAX1745 offers a resistor-adjustable output voltage.
Figure 7. The MAX15006/MAX15007 are low 9µA quiescent-current linear regulators ideal for always-on automotive applications.
The MAX15006/MAX15007 are ultra-low quiescent-current linear regulators that operate from an input voltage of 4V to 40V. The ICs deliver up to 50mA of output current, and consume only 10µA of IQ at no load. The internal p-channel pass device keeps the IQ low even at full load. The MAX15007 consumes only 3µA current when in shutdown.
The MAX15006A/MAX15007A have a fixed 3.3V output, while the MAX15006B/MAX15007B have a fixed 5V output voltage. The MAX15007 includes an enable input to turn the device on or off. All devices are short-circuit protected and include thermal shutdown.
The MAX15006/MAX15007 operate over the -40°C to +125°C automotive temperature range. These devices are available in space-saving 3mm x 3mm, 6-pin TDFN and 8-pin SO thermally enhanced packages.
Figure 8. The MAX5098/MAX5099 withstand 80V load-dump and operate to less than 6V cold crank.
The MAX5098/MAX5099 are 2.2MHz, 180° out-of-phase dual-output switching regulators with internal high-side FETs. The ICs operate over a 4.5V to 19V input voltage range and integrate load-dump protection circuitry capable of handling load-dump transients up to 80V. The MAX5099 also integrates two low-side MOSFET drivers to allow each converter to drive an external synchronous rectifier MOSFET. Outputs 1 and 2 deliver up to 2A and 1A output current, respectively. The MAX5098 can be configured as a step-up or step-down converter; the MAX5099 operates only in step-down mode.
The MAX5098/MAX5099 also feature short-circuit (hiccup current limit) and thermal protection. The ICs operate over -40°C to +125°C and are available in a thermally enhanced, exposed pad, 5mm x 5mm, 32-pin TQFN or 28-pin TSSOP package.
A German version of this article appeared in the June 2008 edition of Automobil Elektronik.
¹ Please note that in ECORUN conditions the car engine is stopped temporarily (e.g., while waiting for the traffic light). This condition is also called start-stop or warm crank in the industry.
全部0条评论
快来发表一下你的评论吧 !