采用乘法DAC 移动应用也非常合适

模拟技术

2409人已加入

描述

你也许知道,某些 DAC 包含可在输出端生成基准电压的 R2R 网络。这些电阻都是精密电阻。它们通常用来根据发送到 DAC 的数字值切换电流,从而在输出放大器端产生一个电压。采用乘法 DAC 时,并未集成输出放大器。这就有可能实现某些非常规应用,并将 R2R 网络用作一个电阻。

感兴趣吗?今天就有请 ADI 医疗健康行业客户的现场应用工程师经理 Thomas Tzscheetzsch 为您讲解“乘法 DAC 如何用于 DAC 以外的应用”。

大多数 DAC 采用固定的正基准电压工作,输出电压或电流与基准电压和设定的数字码的乘积成比例。而对于所谓的乘法数模转换器(MDAC),情况并非如此,其基准电压可以变化,变化范围通常是±10V。因此,通过基准电压和数字码可以影响模拟输出(在这两种情况下都是动态的)。

应用

借助相应的接线,模块可以输出放大、衰减或反转的信号(相对于基准信号而言)。因此,其应用领域包括波形发生器、可编程滤波器和 PGA(可编程增益放大器),以及其他必须调整失调或增益的很多应用。

放大器

图 1 显示了一个带下游放大器的 14 位 MDAC AD5453 ,放大器可根据 DAC 的编程数字码放大或削弱信号。

电路计算

该电路的输出电压 (VOUT) 计算如下:

放大器

除了增益和 DAC 的设定数字码 D 之外,输出电压还受运算放大器电源电压的影响或限制。在所示情况下, ADA4637-1 放大器的电源电压为±15 V 电压,应输出 ±12V 的最大电压,因此其控制范围足够大。增益由电阻 R2 和 R3 确定:

放大器

所有电阻(R1 至 R3)应具有相同的电阻温度系数 (TCR),但不一定要与 DAC 内部电阻的 TCR 相同。电阻 R1 用于根据 R 2 和 R3 及以下关系调整 DAC 内部电阻 (RFB):

放大器

选择电阻时,必须确保运算放大器在最大输入电压时仍处于工作范围内( DAC 可以在 VREF 下处理 ±10 V)。还应注意,放大器的输入偏置电流 (IBIAS) 会被电阻( RFB + R2|| R3)放大,这对失调电压有相当大的影响。选择具有超低输入偏置电流和超低输入失调电压(依据数据手册)的运算放大器 ADA4637-1 正是基于这个原因。为了防止闭环控制系统不稳定或所谓的响铃振荡,在 IOUT 和 RFB 之间插入 4.7 pF 电容;特别推荐将这一做法用于快速放大器。

如前所述,放大器的失调电压会被闭环增益放大。当设置增益的外部电阻发生改变,变化值对应于数字步长时,此值会增加到期望值上,产生微分非线性误差。如果它足够大,可能会导致 DAC 行为非单调。为避免这种效应,有必要选择低失调电压和低输入偏置电流的放大器。

相比其他电路的优势

原则上,如果允许使用外部基准电压源,那么也可以使用标准 DAC,不过标准 DAC 与 MDAC 之间有一些重大区别。标准 DAC 的基准输入只能处理幅度有限的单极性电压。除幅度外,基准输入带宽也非常有限。这在数据手册中用乘法带宽值表示。以 AD5664 16 位 DAC 为例,该值为 340 kHz。乘法 DAC 的基准输入可以使用双极性电压,其也可以高于电源电压。带宽同样高得多—— AD5453 的典型带宽为 12 MHz。

结语

乘法数模转换器的使用不是那么广泛,但其提供了许多可能性。除了高带宽的自制 PGA 以外,移动应用也是非常合适的应用,因为其功耗要求低于 50 μW。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分