GPU图形渲染流水线的两个部分主要工作

电子说

1.3w人已加入

描述

GPU 图形渲染流水线的主要工作可以被划分为两个部分:

① 把 3D 坐标转换为 2D 坐标

② 把 2D 坐标转变为实际的有颜色的像素

GPU 图形渲染流水线的具体实现可分为六个阶段,如下图所示。

1. 顶点着色器(Vertex Shader)

2. 形状装配(Shape Assembly),又称 图元装配

3. 几何着色器(Geometry Shader)

4. 光栅化(Rasterization)

5. 片段着色器(Fragment Shader)

6. 测试与混合(Tests and Blending)

第一阶段,顶点着色器。

该阶段的输入是 顶点数据(Vertex Data) 数据,比如以数组的形式传递 3 个 3D 坐标用来表示一个三角形。顶点数据是一系列顶点的集合。顶点着色器主要的目的是把 3D 坐标转为另一种 3D 坐标,同时顶点着色器可以对顶点属性进行一些基本处理。

第二阶段,形状(图元)装配。

该阶段将顶点着色器输出的所有顶点作为输入,并将所有的点装配成指定图元的形状。图中则是一个三角形。图元(Primitive) 用于表示如何渲染顶点数据,如:点、线、三角形。

第三阶段,几何着色器。

该阶段把图元形式的一系列顶点的集合作为输入,它可以通过产生新顶点构造出新的(或是其它的)图元来生成其他形状。例子中,它生成了另一个三角形。

第四阶段,光栅化。

该阶段会把图元映射为最终屏幕上相应的像素,生成片段。片段(Fragment) 是渲染一个像素所需要的所有数据。

第五阶段,片段着色器。

该阶段首先会对输入的片段进行 裁切(Clipping)。裁切会丢弃超出视图以外的所有像素,用来提升执行效率。

第六阶段,测试与混合。

该阶段会检测片段的对应的深度值(z 坐标),判断这个像素位于其它物体的前面还是后面,决定是否应该丢弃。此外,该阶段还会检查 alpha 值( alpha 值定义了一个物体的透明度),从而对物体进行混合。因此,即使在片段着色器中计算出来了一个像素输出的颜色,在渲染多个三角形的时候最后的像素颜色也可能完全不同。

关于混合,GPU 采用如下公式进行计算,并得出最后的颜色。

R = S + D * (1 - Sa)

关于公式的含义,假设有两个像素 S(source) 和 D(destination),S 在 z 轴方向相对靠前(在上面),D 在 z 轴方向相对靠后(在下面),那么最终的颜色值就是 S(上面像素) 的颜色 + D(下面像素) 的颜色 * (1 - S(上面像素) 颜色的透明度)。

上述流水线以绘制一个三角形为进行介绍,可以为每个顶点添加颜色来增加图形的细节,从而创建图像。但是,如果让图形看上去更加真实,需要足够多的顶点和颜色,相应也会产生更大的开销。为了提高生产效率和执行效率,开发者经常会使用 纹理(Texture) 来表现细节。纹理是一个 2D 图片(甚至也有 1D 和 3D 的纹理)。纹理一般可以直接作为图形渲染流水线的第五阶段的输入。

最后,我们还需要知道上述阶段中的着色器事实上是一些程序,它们运行在 GPU 中成千上万的小处理器核中。这些着色器允许开发者进行配置,从而可以高效地控制图形渲染流水线中的特定部分。由于它们运行在 GPU 中,因此可以降低 CPU 的负荷。着色器可以使用多种语言编写,OpenGL 提供了 GLSL(OpenGL Shading Language) 着色器语言。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 相关推荐
  • gpu

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分