对于配电网络中的电源系统,如何提高48V的配电性能

电子说

1.3w人已加入

描述

(文章来源:电子工程世界)

配电网络 (PDN) 是所有电源系统的主干部分。随着系统电源需求的不断上升,传统 PDN 承受着提供足够性能的巨大压力。对于功耗和热管理而言,主要有两种方法可以改善 PDN 对电源系统性能的影响。一是使用更大线缆、连接器和更厚主板电源层减少 PDN 电阻;二是在给定的传输功率下,提高 PDN 电压以减小电流,这允许使用更小的线缆、连接器和更薄的主板铜箔电源层,从而可缩减相应的尺寸、成本和重量。

多年来,工程师一直使用第一种方法,因为该方法与数十年来为单相 AC 及 12V DC-DC 转换器及稳压器构建的大型生态系统兼容。其它原因还包括 DC-DC 转换器拓扑性能不足,无法高效将更高电压直接转换为负载点 (PoL) 电压,以及这些电压更高的转换器及稳压器的相关费用等。

然而,现代电源设计使用第二种方法的越来越多,提高 PDN 电压。这一趋势的推动力源于系统负载功率的显著提升。以数据中心为例,人工智能 (AI)、机器学习和深度学习的加入,使机架功率迅速上升到了两倍,达到 20kW范围,而超级计算机服务器机架则已接近 100kW 或更高。理想的负载点电源系统。稳压器在 Vin = Vout 时提供最高效率。大电流供电最接近负载点时效率最高,从而可最大限度降低 I2R 损耗。

这一电源需求的增长促使系统工程师对其整个 PDN 进行了重新评估,从机架到机架内部的配电,乃至服务器刀片上的 PDN,无一例外,因为现代 CPU 和 AI 处理器功耗更大。机架功率为 5kW 水平时,单相 AC到机架 是正常的。然后将 AC 转换为 12V,配送给服务器刀片。功率为 5kW 时,PDN 电流为 416A (5kW/12V),配电通过大量线缆进行。

处理器功率大约从 2015 年开始急剧上升,因此机架电源上升到了 12kW。所以,必须在 12V PDN 的机架内对 1kA 电流进行管理。OCP (开放计算项目) 联盟成员主要包括云计算、服务器和 CPU公司,该联盟将一如既往地发展其 12V 机架设计。OCP 机架从线缆转移到了母线排,并在机架内分配多个单相 AC 至 12V 转换器,以最大限度缩减机架到服务器刀片的PDN距离以及阻抗。与以往机架供电的主要差异是,以前来自于机架馈电的单相交流电为三相中的单相。

能够构建其自己的机架及数据中心解决方案的公司开始转而采用 48V 配电。这一策略将 12kW 机架的大电流 PDN 问题削减到了 250A,但为刀片服务器的功率转换带来了新的难题。通过“最后一英寸”传输大电流,为高功率处理器设置了障碍。Vicor 技术不仅可提高这一性能,而且还可简化主板设计。

机架电源超过 20kW 的范围时,服务器机架 PDN 设计将不断发展。人们为了维持 12V 原有系统的现状,在许多方面都得有创新,但数据中心引入AI的处理器稳态电流超过 1000安培、峰值电流接近 2000安培时,就会让基于 12V传统的 PDN 不切实际。AI 的核心是性能,而 12V PDN 则会限制性能和竞争力。

为了解决高功率机架的诸多难题,OCP 联盟正在向可容纳 48V PDN 的机架发展。从 12V 配电转向 48V,可将输入电流需求降低 4 倍 (P=V×I),将损耗锐减 16 倍(功耗 = I2R)。此外,汽车、5G、LED 照明和显示屏市场以及工业应用,也在向 48V 配电转型。因此,48V 电源转换器生态系统正在迅猛发展,转用 48V有很好的商业意义。但不是所有的 48V 转换器拓扑及架构都相同。48V 转换器市场性能参差不齐,这是一个值得仔细考虑的实际情况。

由于高性能和电源效率位列高功率机架及数据中心需求的榜首,有几家公司正在采用三相 AC 至 48V,为服务器刀片配电。另外,也可使用机架内分配的高电压 DC(380V,源自整流三相输入)。多家高性能计算公司正在将 HVDC PDN 用于功率高达 100kW 的机架。为服务器刀片供电的 PDN 转换为 48V 时,刀片上的电源转换也必须改变。这种转变导致了DC-DC 转换器与稳压器在架构、拓扑与封装的多种选择。

48V 模式对于数据中心服务器而言还很陌生,但在路由器和网络交换机等通信应用中却很普及,因为它们使用的是可充电的 48V 铅酸备用电池系统。数据中心服务器中以前使用的通用架构叫中间母线架构或IBA。IBA 包括隔离式非稳压母线转换器,可将 -48V 转换为 +12V,提供给一系列多相降压稳压器,用于负载点。一些云计算公司和 HPC 公司最初为其 48V 系统复制了这一架构,但在功率增加而 PoL 电压降至 1V 以下时,设计人员开始寻找可替代的架构和拓扑。

电源系统架构、开关拓扑和封装对于高性能高密度设计而言非常重要。随着 AI 及 CPU 处理器电流的增加,由于稳压器和 PoL 之间的PDN 电阻影响,PoL处功率传递电路的密度成为人工智能应用中最关键的元素。业界一流的最新 AI 处理器具有大约 1kA 的稳态电流,峰值电流达 1.5kA 至 2kA。考虑到处理器常规多相降压稳压器输出的典型 PDN 电阻在 200 至 400?Ω 之间,所带来的 PCB 功耗为稳态 (P = I2R) 200-400W,对于任何系统来说,都太高了,根本无法处理。

PDN 损耗成了 DC-DC 稳压器设计效率及性能的主导因素。这是一个负载点问题,而且提高电压根本不现实(PoL 电压在快速下降,以维持摩尔定律的有效性),因此唯一可行的方法是减少 PDN 电阻,将稳压器尽量靠近处理器布置。在多相降压稳压器的案例中,通常会占用 16-24 个相位,才能支持 AI 处理器的大电流。这不是一种高电流密度方案,无法解决 PDN 功耗问题。
     (责任编辑:fqj)

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分