伽马射线激光的研究迎来新的突破

电子说

1.3w人已加入

描述

(文章来源:量子认知)

伽玛射线(或γ射线)是原子衰变裂解时放出的射线之一。其电磁波波长在0.01纳米以下,穿透力很强,又携带高能量,是继α射线、β射线后发现的第三种原子核射线。和X射线特性相似但具有比X射线还要强的穿透能力。伽玛射线可以应用于医学成像,航天器推进和癌症治疗等。

伽马射线激光(gamma-ray laser)是一种会产生相干伽马射线的设施,就像普通激光器会产生可见光的相干射线一样。

加州大学河滨分校的物理学家艾伦·米尔斯(Allen Mills)通过研究与计算结果表明,充满正电子素原子气体的空心球形气泡在液氦中是稳定的。这一计算结果使科学家们更进一步地实现了伽马射线激光,米尔斯的计算表明,含有100万个原子的液态氦中的气泡,其密度将是普通空气的6倍,并且会以物质-反物质的玻色-爱因斯坦凝聚态的形式存在。”他这一研究成果刚发表在《物理评论A》上。

正电子素(Positronium)是一个电子与一个正电子组成的亚稳定的束缚态,化学符号是Ps。最早由麻省理工学院物理学家Martin Deutsch在1951年发现。

正电子素是极短寿命且仅短暂稳定的类氢原子,是物质-反物质混合物,是电子及其反粒子的结合态。为了产生伽马射线激光束,正电子素需要处于一种称为玻色-爱因斯坦凝聚态的状态,即处于相同量子态的正电子原子的集合,从而允许更多的相互作用和伽马射线。这种凝聚态是伽马射线激光的关键成分。

氦是宇宙中含量第二高的元素,仅在极低的温度下才以液态形式存在。 氦气对正电子具有负亲和力。氦气排斥氦气,在液态氦气中形成气泡。 1957年首次报道了正电子素在液氦中的长寿命。

当电子遇到正电子素时,它们一个结果是可能相互湮灭产生强大而高能的电磁辐射,即伽马辐射。第二个结果是正电子素的形成。湮灭(英语:annihilation)是指当物质和它的反物质相遇时,会发生完全的物质-能量转换,转为能量(如以光子的形式)的过程,又称互毁、相消、对灭。

米尔斯说实验室正在配置反物质束,以期在这个计算中预测会在液氦中产生奇特的气泡。这样的气泡可作为正电子素玻色-爱因斯坦冷凝物的来源。

米尔斯表示:“我们实验的近期结果可能是观察到穿过石墨烯片的正电子素隧穿,这对包括氦在内的所有普通物质原子都是不可渗透的,并且在可能的量子计算应用中会形成正电子素原子激光束。”。

伽玛射线激光是一个雄心勃勃的项目,充满了实验困难,需要开发新的实验技术。使用高能粒子束,可以通过称为成对产生的方法产生反物质。然而,这通常涉及昂贵且大型的设施,例如电子直线加速器,目前在世界上这种操作很少(也许只有三个)。维塔利·金茨堡(Vitaly Ginzburg)在2003年的诺贝尔奖演讲中,将伽马射线激光列为物理学中最重要的问题之一。

(责任编辑:fqj)

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分