南京大学实现硅基光量子芯片高维纠缠态多项功能

电子说

1.2w人已加入

描述

集微网消息,近日,南京大学物理学院马小松教授团队在硅基集成光量子芯片上实现了高维纠缠态的产生,滤波,调控等多项功能,并且利用精度的片上量子调控完成了量子模拟与量子精密测量等应用任务。

图片来源:南京大学

据悉,马小松教授团队利用集成光学芯片的微纳加工,借助硅的三阶非线性,采用优化设计的干涉型微环谐振腔,通过对芯片上光子的路径模式进行编码,实现芯片上的三维光量子态的产生,滤波,调控等多项功能,形成有源集成光量子芯片(见上图)。通过硅波导中自发四波混频效应及对线性光路的高稳定、可重构相干调控,团队实现了提取效率高于97%、无需滤波后处理、对泵浦光子高抑制的双光子源;得到了片上量子干涉可见度高于96.5%,三维最大纠缠态的保真度达到95.5%。

基于这个高质量的三维纠缠态,团队实验完成了对三维贝尔不等式的验证与无相容性漏洞的量子互文性检验。在量子模拟方面,通过对三维纠缠量子态的操控,团队在全球首次实现了利用量子光学器件模拟图论,特别是通过量子态的相干性的测量直接获得图的完美匹配数。在信息复杂度理论中,获得图的完美匹配数是属于#P完全(#P-complete)复杂度。这个工作首次验证图的量子模拟实验的可行性,迈出了利用量子光学器件解决#P完全问题的第一步。

在量子精密测量方面,申请人团队还利用量子光学芯片演示了高精度相位测量,突破了经典干涉仪的测量精度的理论极限,体现了高维量子纠缠的优势。该研究为多体高维量子纠缠体系的片上制备与量子调控技术的应用提供了重要基础。

据了解,该成果已在在Nature合作期刊npj Quantum Information上发表。同时,该项研究得到南京大学卓越计划和国家重点研发计划、国家自然科学基金、中央高校基本科研业务费专项基金项目的资助。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分