dsp系统的特点是什么_dsp系统硬件设计过程都有哪些步骤

处理器/DSP

871人已加入

描述

  dsp系统的特点是什么

  数字信号处理有别于普通的科学计算与分析,它强调运算处理的实时性,因此DSP除了具备普通微处理器所强调的高速运算和控制功能外,针对实时数字信号处理,在处理器结构、指令系统、指令流程上具有许多新的特征,其特点如下:

  算术单元

  具有硬件乘法器和多功能运算单元,硬件乘法器可以在单个指令周期内完成乘法操作,这是DSP区别于通用的微处理器的一个重要标志。多功能运算单元可以完成加减、逻辑、移位、数据传送等操作。新一代DSP内部甚至还包含多个并行的运算单元,以提高其处理能力。针对滤波、相关、矩阵运算等需要大量乘和累加运算的特点,DSP的算术单元的乘法器和加法器,可以在一个时钟周期内完成相乘、累加两个运算。近年出现的一些DSP如ADSP2106X、DSP96000系列DSP可以同时进行乘、加、减运算,大大加快了FFT的蝶形运算速度。

  总线结构

  传统的通用处理器采用统一的程序和数据空间、共享的程序和数据总线结构,即所谓的冯。诺依曼结构。DSP普遍采用了数据总线和程序总线分离的哈佛结构或者改进的哈佛结构,极大地提高了指令执行速度。片内的多套总线可以同时进行取指令和多个数据存取操作,许多DSP片内嵌有DMA控制器,配合片内多总线结构,使数据块传送速度大大提高。

  专用寻址单元

  DSP面向数据密集型应用,伴随着频繁的数据访问,数据地址的计算也需要大量时间。DSP内部配置了专用的寻址单元,用于地址的修改和更新,它们可以在寻址访问前或访问后自动修改内容,以指向下一个要访问的地址。地址的修改和更新与算术单元并行工作,不需要额外的时间。DSP的地址产生器支持直接寻址、间接寻址操作,大部分DSP还支持位反转寻址(用于FFT算法)和循环寻址(用于数字滤波算法)。

  片内存储器

  针对数字信号处理的数据密集运算的需要,DSP对程序和数据访问的时间要求很高,为了减小指令和数据的传送时间,许多DSP内部集成了高速程序存储器和数据存储器,以提高程序和数据访问存储器的速度。

  流水处理技术

  DSP大多采用流水技术,即将一条指令的执行过程分解成取指、译码、取数、执行等若干个阶段,每个阶段称为一级流水。每条指令都由片内多个功能单元分别完成取指、译码、取数、执行等操作,从而在不提高时钟频率的条件下减少了每条指令的执行时间。

  dsp系统硬件设计过程都有哪些步骤

  DSP硬件设计包括:硬件方案设计、DSP及周边器件选型、原理图设计、PCB设计及仿真、硬件调试等。前一讲我们详细讲述了硬件方案设计、DSP及周边器件选型两部分内容,本讲详细讲述原理图设计、PCB设计、硬件调试等内容。以期共享设计的经验,并能够提高大家的设计效率。

  1、系统资源规划

  硬件设计的前提需要做的一件事是对整个系统的资源进行规划,最终得到系统的资源分配表,即MemoryMap。表1提供了一个用TMS320DM642设计的图像处理系统的地址映射表。

  通过表1我们可以清晰地看到程序空间、数据空间、图像输入口等资源的地址。经过对系统资源的规划,我们的硬件设计才能够有整体的规划,不然设计出来的原理图就是非常盲目的“无源之水”。

  2、硬件原理图设计

  DSP的芯片厂家在设计出每一种DSP芯片时一般都提供了相应的EVM(评估板)参考原理图设计,大家可以通过网络免费下载,或通过购买原装的EVM板得到。详细的针对某一个板的原理我们就不细讲解,根据作者多年从事DSP设计的经验把设计中的技巧总结出来与大家分享。

  硬件设计时,应重点注意以下几点。

  (1)时钟电路。DSP时钟可由外部提供,也可由板上的晶振提供。但一般DSP系统中经常使用外部时钟输入,因为使用外部时钟时,时钟的精度高、稳定性好、使用方便。由于DSP工作是以时钟为基准,如果时钟质量不高,那么系统的可靠性、稳定性就很难保证。因此,若采用外部时钟,选择晶振时应对其稳定性、毛刺做全面的检验,以便DSP系统可靠地工作。

  (2)复位电路。应同时设计上电复位电路和人工复位电路,在系统运行中出现故障时可方便地人工复位。对于复位电路,一方面应确保复位低电平时间足够长(一般需要20ms以上),保证DSP可靠复位;另一方面应保证稳定性良好,防止DSP误复位。

  (3)在DSP电路中,对所有的输入信号必须有明确的处理,不能悬浮或置之不理。尤其要注意的是:若设计中没用到不可屏蔽硬件中断NMI,则硬件设计时应确保将其相应引脚拉高,否则程序运行时会出现不可预料的结果;若设计中用到NMI,也应在程序正常执行阶段置其相应引脚为高电平。

  3、高频PCB设计

  数字器件正朝着高速、低耗、小体积、高抗干扰性的方向发展,这一发展趋势对印刷电路板的设计提出了很多新要求。作者根据多年在硬件设计工作中的经验,总结一些高频布线的技巧,供大家参考。

  (1)高频电路往往集成度较高,布线密度大,采用多层板既是布线所必须的,也是降低干扰的有效手段。

  (2)高速电路器件管脚间的引线弯折越少越好。高频电路布线的引线最好采用全直线,需要转折,可用45°折线或圆弧转折,满足这一要求可以减少高频信号对外的发射和相互间的耦合。

  (3)高频电路器件管脚间的引线越短越好。

  (4)高频电路器件管脚间的引线层间交替越少越好。所谓“引线的层间交替越少越好”是指元件连接过程中所用的过孔(Via)越少越好,据测,一个过孔可带来约0.5pF的分布电容,减少过孔数能显著提高速度。

  (5)高频电路布线要注意信号线近距离平行走线所引入的“交叉干扰”,若无法避免平行分布,可在平行信号线的反面布置大面积“地”来大幅度减少干扰。同一层内的平行走线几乎无法避免,但是在相邻的两个层,走线的方向务必取为相互垂直。

  (6)对特别重要的信号线或局部单元实施地线包围的措施,即绘制所选对象的外轮廓线。利用此功能,可以自动地对所选定的重要信号线进行所谓的“包地”处理,当然,把此功能用于时钟等单元局部进行包地处理对高速系统也将非常有益。

  (7)各类信号走线不能形成环路,地线也不能形成电流环路。

  (8)每个集成电路块的附近应设置一个高频去耦电容。

  (9)模拟地线、数字地线等接往公共地线时要用高频扼流环节。在实际装配高频扼流环节时用的往往是中心孔穿有导线的高频铁氧体磁珠,在电路原理图上对它一般不予表达,由此形成的网络表(netlist)就不包含这类元件,布线时就会因此而忽略它的存在。针对此现实,可在原理图中把它当做电感,在PCB元件库中单独为它定义一个元件封装,布线前把它手工移动到靠近公共地线汇合点的合适位置上。

  (10)模拟电路与数字电路应分开布置,独立布线后应单点连接电源和地,避免相互干扰。

  (11)DSP、片外程序存储器和数据存储器接入电源前,应加滤波电容并使其尽量靠近芯片电源引脚,以滤除电源噪声。另外,在DSP与片外程序存储器和数据存储器等关键部分周围建议屏蔽,可减少外界干扰。

  (12)片外程序存储器和数据存储器应尽量靠近DSP芯片放置,同时要合理布局,使数据线和地址线长短基本保持一致,尤其当系统中有多片存储器时要考虑时钟线到各存储器的时钟输入距离相等或可以加单独的可编程时钟驱动芯片。对于DSP系统而言,应选择存取速度与DSP相仿的外部存储器,不然DSP的高速处理能力将不能充分发挥。DSP指令周期为纳秒级,因而DSP硬件系统中最易出现的问题是高频干扰,因此在制作DSP硬件系统的印制电路板(PCB)时,应特别注意对地址线和数据线等重要信号线的布线要做到正确合理。布线时尽量使高频线短而粗,且远离易受干扰的信号线,如模拟信号线等。当DSP周围电路较复杂时,建议将DSP及其时钟电路、复位电路、片外程序存储器、数据存储器制作成最小系统,以减少干扰。

  (13)当本着以上原则,熟练设计工具的使用技巧以后,经过手工布线完成后,高频电路为了提高系统的靠性和可生产性,一般都需要利用高级的PCB仿真软件进行仿真。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分