PCIe Gen3/Gen4接收端链路均衡测试(下篇:实践篇)

测量仪表

1490人已加入

描述

作者:泰克科技应用工程师 李煜

聚焦于PCIe 3.0和4.0中的动态均衡技术,本文介绍其原理、实现及其相关的一致性测试,这种动态均衡技术被称作“Link Equalization”(链路均衡,简称为LEQ)。本系列文章分上下两篇,本文是下篇实践篇,重点介绍Rx链路均衡的测试和调试,泰克公司的自动化软件为此提供了业界最优的解决方案。

另外,泰克PCI Express专家David Bouse将在4月10日(周五)13:00-16:00直播课堂【PCIExpress 5.0规范更新解读和测试揭秘】讲解如何解决PCIe 5.0的新测试挑战https://info.tek.com/cn-pcie-mofu.html。

接收端链路均衡测试(Rx LEQ)

在PCIe 2.0的时代,通常只要保证了发送端的信号质量,那么整个系统也就能够正常工作;因此接收端测试并不是必测项。但在PCIe 3.0/4.0中,由于速率成倍的增加;并且又经过长走线的传输,因此在接收端采用了复杂的均衡技术;因此在PCIe 3.0/4.0中接收端测试属于必测项。

泰克公司的BSX系列的误码仪是业界高性能的串行误码仪,能够实现高达32Gbps的码型发生和误码分析功能,同时其内部集成有预加重模块、噪声注入、抖动注入等,支持基于协议的握手功能。因此非常适合PCIe 3.0和4.0的接收端测试。由于BSX系列最高支持到32Gbps,因此它也可以充分地满足未来的PCIe 5.0的接收端测试的要求。图1是使用BSX系列的误码仪进行PCIe 3.0d的接收端测试的示意图。

图1 PCIe 3.0的接收端测试的示意图

在PCIe 3.0 & 4.0的接收端内部集成了复杂的单元,例如:均衡电路、时钟恢复电路、以及判决电路等;它们都是不能直接探测到的。因此,接收端对于测试人员来说,是一个黑盒子。PCI-SIG协会的规范开发人员,在面临此种困难时,开发了一套被称作“压力眼图(StressedEye)”的方法论来完成对接收端的评估。这种方法论的核心思想就是:通过向接收端施加一个严重劣化的信号(即压力眼图),来检测在此种情况下,接收端是否仍能够正确地接收信号。因此,无论是PCIe 3.0 & 4.0 Rx LEQ的测试,基本上都可以分解成三个步骤:压力眼图的校准、进入环回模式、进行误码率测试。

  • Ÿ压力眼图的校准就是:定量地规定这个劣化信号劣化到何种程度、以及测量该劣化信号的方法;
  • Ÿ进入环回模式:为了检测接收端是否正确接收该信号;需要将已经接收到的信号原封不动地环回到待测的发送端;然后误码仪对这个环回的信号进行判断。因此需要让待测进入环回模式;
  • Ÿ进行误码率测试:使用规定好的码型进行误码率测试。

在压力眼图的校准时,涉及到信号的特性分析以及调整迭代,这些都需要反复进行,人工手动操作非常地耗时,并且吃力不讨好。为此,泰克公司提供了业界最优的PCIe Rx自动化测试软件(BSXPCI4CEM),如图2所示。通过泰克公司的PCIe Rx自动化测试软件,可以大大缩短开发人员的研发时间,提供产品的可靠性。

PCIe Gen3

图2 泰克PCIe Rx自动化软件GUI界面

对于这个压力眼图恶劣到何种程度,必须要进行精确地定量地描述,因此在PCIe的规范中,给出了这个压力眼图的要求。无论是PCIe 3.0还是PCIe 4.0,校准过程都分为两个阶段:

  • ŸTP1校准:TP1指的是整个参考信道的近端,在该处校准幅度、随机抖动Rj、正弦抖动Sj、以及Tx EQ。
  • ŸTP2校准:TP2指的是整个参考信道的远端,在该处校准DMSI、CMSI、以及最终的眼高/眼宽。

无论是PCIe 3.0,还是PCIe 4.0,TP1的校准过程都是一样的,而且较为简单;不区分待测对象是插卡还是系统板,整个拓扑连接如图3所示。

PCIe Gen3

图3 PCIe 3.0 & 4.0的TP1校准拓扑连接

TP2校准则连接较为复杂,耗时较长;并且对于插卡和系统板来说,拓扑连接是不同的。而且在PCIe 3.0和PCIe 4.0中,TP2校准的策略有所不同。在PCIe 3.0中,是通过调整DMSI和Rj来达到最终的眼高/眼宽。而在PCIe 4.0中,则主要通过调整ISI来使得眼图接近最终的眼高/眼宽,这一过程为粗调;然后再通过调整Sj、DMSI、或幅度来获得最终的眼图,这一过程为细调。

PCIe 3.0的TP2校准的拓扑连接如图4所示。对于插卡的校准来说,在其拓扑连接中采用的是两连接头的拓扑结构,这是为了模拟真实的服务器背板的恶劣信道情况。整个参考信道是由图4(a)中的物理参考信道和SigTest通过软件嵌入的信道两部分组成。

PCIe Gen3

(a) (b)

图4 PCIe 3.0 TP2校准拓扑连接:(a) 插卡的校准 (b) 系统板的校准

完成了拓扑连接之后,就可以进行PCIe 3.0的TP2的校准了。在最终眼高/眼宽的校准过程,通过调整Rj和DMSI,来达到最终的眼高/眼宽要求。这里存在的风险是:有时候协会提供的治具一致性较差;需要很大的Rj或DMSI才能够达到最终的眼高/眼宽要求。而这并不符合在真实的情况下的Rj和DMSI的情况。

因此在PCIe 4.0中TP2的校准修改了相应的校准策略,引入了一个ISI板,优先来调节参考信道的ISI值,来对眼图进行调整。当眼图接近到最终的眼高/眼宽附近时,再通过调整DMSI,Sj和幅度来达到最终的眼高/眼宽,并且DMSI,Sj和幅度的调整范围做了限制,从而能够比较真实地模拟现实中的情况。

PCIe 4.0的TP2校准的拓扑连接如图5所示。与PCIe 3.0相比,除了参考信道的末端嵌入了一个封装损耗之外,其他的信道都是由真实的物理信道组成的。并且由于速率翻倍,在拓扑连接中,链路损耗的估算时必须要将连接线缆等的损耗计入在内。值得注意的是:封装损耗是在示波器之中嵌入的,而不是在SigTest中。这个参考封装损耗是为了模拟真实情况下的芯片封装损耗,由于RC芯片(Root Complex)的封装一般比EP芯片(Endpoint)的封装要大,因此针对RC的参考封装损耗为5dB;而针对EP的参考封装损耗为3dB。

PCIe Gen3

(a) (b)

图5 PCIe 4.0 TP2校准拓扑连接:(a) 插卡的校准 (b) 系统板的校准

如前所述,在PCIe 4.0的校准过程中,需要参考信道的ISI值,这就涉及到一个ISI pair的迭代过程,整个迭代过程的起点是-28 dB的端到端的损耗,依据计算出来的眼高/眼宽来确定下一个ISIpair;端到端的损耗调整范围为-27 dB ~ 30dB。泰克公司的PCIe Rx自动化软件能够提供链路端到端损耗的估算,用户可以自行决定是否继续进行ISI迭代。

进入环回模式

LEQ的测试对测试仪器提出了很高的要求。它要求测试仪器能够完成协议级别的动态应答和训练。在工业界中,一般称这样的仪器为“协议感知”型仪器(Protocol-aware Instrument)。

泰克公司的BSX系列误码仪就是这样的一种协议感知型仪器,支持的速率最高可到32Gbps;可以支持多种标准协议,例如PCIe 3.0 & 4.0 & 5.0、USB 3.1 & 3.2等。另外,用户还可以通过自带的Pattern Sequencer功能完成各种自主开发的标准的测试。

PCIe Gen3

图6 泰克公司的协议感知型误码仪:BSX系列

对于PCIe 3.0 & 4.0来说,从状态机的角度,有两种方式进入环回模式,如图7所示:

PCIe Gen3

(a) (b)

图 7 PCIe 3.0&4.0进入环回模式:(a)从Configuration进入 (b)从Recovery进入

进行误码率测试

若成功了进入了Loopback,那么后续的误码率测试就很简单。误码仪发送ModifiedCompliance Pattern,检查1012个比特数据;若不超过1个误码;那么就算通过;否则就未通过。

诊断和调试

在实际的Rx LEQ的测试中,经常由于种种原因,无法进入到环回模式;或者就算进入到了环回模式,也存在较多的误码。这个时候,我们就需要超出一致性测试;而进行一系列的调试工作,来找出根因(Root Cause)。

PCIe Gen3

图8 使用误码仪的眼图功能观测待测对象的环回数据输出的信号质量

泰克公司PCIe Rx自动化测试软件,除了提供协会所要求的一致性测试之外,还提供了丰富的调试功能。再配合上BSX系列的误码仪的通用调试功能,能够为用户提供全方位的灵活性。

在进行Rx LEQ环回测试时,有两条数据通路:接收数据通路和环回数据通路。由于Rx LEQ是针对接收数据通路的测试,因此用户必须保证不会由于环回数据通路的原因而导致误码仪的DET进行了误判。泰克的BSX系列的误码仪具有丰富的眼图测试功能,如图8所示。这样用户再不进行任何拓扑连接改变的情况下,就能够进行误码的调试。

用户可以使用泰克公司提供的“Empty A – Modified Compliance B.ram”文件,就能够使得被测对象稳定地进入Compliance模式,然后通过这个ran文件进行码型切换,将被测对象的输出端切换到8Gbps或16Gbps,观察哪个预设定值能够给出最好的眼图。然后在图9中设置“Preset/Hint”成刚才的预设置,就能够保证环回数据通路不会引入误判的误码。

倘若排除了环回数据通路所引入的误判的误码;Rx LEQ仍然存在误码。这个时候,用户需要进一步分析误码的来源,比如说是否是DUT的均衡算法没有达到最优,从而没有像链路对端请求最优的Tx EQ值。此时,用户可以使用泰克公司提供的“BER Test”来对整个系数空间进行扫描,若测得的结果表明:在系数空间中存在一些系数组合能够达到没有误码,那么说明DUT的均衡算法未达到最优。

PCIe Gen3

图9 对Tx EQ的系数空间进行扫描的误码率测试

在此基础上还可以进行裕度测试。泰克的自动化软件提供对Sj和DMSI的裕度测试,如图10、11所示。

PCIe Gen3

图 10 正弦抖动的裕度测试:(a) 设定界面 (b) 扫描测试界面

PCIe Gen3

图 11 差模噪声的裕度测试:(a) 设定界面 (b) 扫描测试界面

泰克公司提供了业界领先的关于PCIe 3.0 & 4.0的一致性解决方案,通过使用泰克公司的高性能的示波器、高性能的误码仪、以及灵活的自动化软件,能够大大缩短用户的开发时间,使得用户的产品在市场上更具竞争力。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分