深度神经网络在识别物体上的能力怎样

人工智能

633人已加入

描述

神经网络的复杂关系推理,什么是关系推理?考虑下面的图像。几乎不可能不把它当作对象;球体,立方体等等。我们可以根据构成图像像素值的数百万个数字来考虑它。或者图像中所有边缘的角度。或者考虑每个10x10像素区域。相反,我们直观地根据它们识别图像的对象和原因。

尝试回答以下问题:“大球体剩下的棕色金属物体剩下的圆柱体大小是多少?”这是CLEVR数据集中的一个示例问题。为了回答这个问题,你需要考虑物体相对于彼此的相对位置。这种以对象和交互为中心的思维被称为关系推理,它是人类智能的核心部分。

深度神经网络非常善于识别物体,但是当涉及到他们的相互作用的推理时,即使是最先进的神经网络也在努力。例如,现有技术的卷积网络可以容易地识别上述图像中的每个对象,但是由于需要关于彼此相关的对象的推理而未能尝试回答该问题。

关系网络

关系网络(RN)它是一个简单的模块,可以为任何神经网络添加关系推理能力。他们将RN添加到其他标准卷积网络中,并在CLEVR数据集上实现超人类性能。

RN是向前迈出的重要一步,但它有一定的局限性。构造它的方式,每个识别的对象只能与其他识别的对象进行一次交互,之后网络必须给出答案。这限制了RN,因为它无法推断导出的交互,即影响对象B的对象A,而对象A又影响对象C,等等。在RN中,对象A必须直接影响对象C,或者根本不影响对象C.通过与对象B的交互不是一种选择。

循环关系网络

为了解决这个限制,我们引入了循环关系网络(RRN)。RRN不是仅执行关系推理的单个步骤,而是执行多个步骤。在每个步骤中,每个对象都受到彼此对象的影响,同时还考虑到它自己的先前状态。这允许交互从一个对象传播到下一个对象,形成复杂的交互链。

责任编辑:Ct

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分