应用于LCoS微型显示器的彩色时序控制器的电路设计

可编程逻辑

1364人已加入

描述

引言

基于头盔显示器对便携性的要求,要实现微型化和低功耗,将彩色时序控制器设计为单片的ASIC是较好的解决方案。本文正是针对应用LCoS(Liquid Crystal on Silicon)微型显示器的HMD,进行其中彩色时序控制器的ASIC设计。

彩色时序原理

彩色时序方法的原理是:首先把每场图像中的红绿蓝信息分离出来,然后在每一场的时间内分3个子场分别把红绿蓝图像写入显示屏,在每个子场的扫描过程结束以及液晶反应之后依次点亮红绿蓝3色光源,从而在一场的时间内依次显示红绿蓝3幅图像,利用人眼睛的特性合成彩色。

asic

彩色时序法的优点是不使用彩色滤色片,一个物理像素也就是实际的一个像素,有利于在同样尺寸的显示屏上实现更高的分辨率。与空间滤色器的方法相比,使用彩色时序的方法使分辨率提高为原来的3倍,即如果在相同的分辨率下,其显示屏尺寸仅为原来的1/3。由于彩色时序是将每场的信息分3个子场在一场时间内写入显示屏,这就使场频提高为原来的3倍,相应的,点时钟频率也提高为原来的3倍。减小显示屏的面积也需要提高频率,这是基于单晶硅的高迁移性能而实现的。同时,场频和点时钟频率的提高也给显示器的视频系统设计提出了更高的要求。

LCoS微型显示技术

LCoS微型液晶显示技术是采用与超大规模集成电路兼容的设计和制造方法将硅基显示矩阵和相关驱动电路集成在一起所构成的微型显示芯片。LCoS属于反射式微型液晶显示技术,其结构是在单晶硅衬底上,利用CMOS工艺把显示矩阵和驱动电路集成在一起, LCoS的像素电极是用铝制作的反射镜面,在像素电极下面设置有金属挡光层,可以防止像素驱动晶体管受强光照射。LCoS的结构示意图如图1所示,液晶层的一侧是具有反射电极的LCoS芯片基板,另一侧是ITO玻璃,中间的液晶层厚度一般为2~3mm。

LCoS器件中光的传播路线同样如图1所示:当光源发出的光到达PBS(Polarization Beam Splitter,偏振分光镜)时P极的光透过, S极光被反射到达铝反射镜,此时加在铝反射镜电极和ITO电极之间的电压将使S极光转换为P极光,所以被铝反射镜反射的光为P极光,可以透过PBS投射到人的瞳孔(NTE近眼显示)或者大屏幕(投影显示)。

asic

LCoS芯片不仅解决了显示矩阵与驱动电路之间的连接问题,而且与穿透式LCD相比,具有更高的分辨率、光利用效率和更成熟的制造技术。

LCoS彩色时序控制器的电路设计

总体结构设计

本文所设计的LCoS彩色时序控制器ASIC可以驱动分辨率最高为1280×1024的LCoS微型显示屏,其功能是:输入24位的数据信号(R:G:B=8:8:8)以及时序信号VS、HS、CLK等,将数据信号R、G、B按照一定的数据变换格式分别写入一组存储器的3个区,而同时读另一组存储器,按顺序将R、G、B三个子场的数据送入LCoS屏实现彩色时序的显示。另外,还要提供LCoS屏所需要的同步信号以及点时钟信号等。要完整地实现该过程,彩色时序控制器必须包括数据变换电路、时序信号产生电路和存储控制电路等3部分。其总体电路框图如图2所示,下面将介绍各部分电路的具体功能和设计。

数据变换电路的设计

由于LCoS屏的数据驱动电路采用了4组移位寄存器,2组从屏的上方写入数据,另2组从屏的下方写入数据,所以需要每次写入4个各8位的像素数据。这种驱动方式使得LCoS屏所需要的点时钟频率降为只采用1组移位寄存器作数据驱动时的1/4。但是由于写入方式的改变,要求对原来每个像素24位(R:G:B=8:8:8)的数据格式进行变换,需要变换为4个像素各32位的R、G、B分别写入LCoS屏。8位移位寄存器的思路很好地实现了数据从24位到32位的变换。

这种移位寄存器的方法实现了R、G、B从8位到32位的变换,还需要分别在每4个时钟周期的第1、2、3个周期取第一、第二、第三组移位寄存器的数据,而在第4个周期不取数据。为了实现这种取数方式,本文设计了一个能够产生3个标志信号的flag电路,通过3个标志信号来控制取走3组移位寄存器的数据。

时序信号产生电路的设计

时序信号产生电路的主要功能是产生LCoS屏所需要的一些接口时序信号,其结构框图如图3所示。

在这里,通过两个分频电路对CLOCK信号进行合适的分频,分别产生子场行同步信号S_HS和子场场同步信号S_VS;时钟屏蔽是为了产生点时钟L_CLOCK,使得在没有数据写入的时间里可以停止点时钟L_CLOCK,从而有效降低了LCoS屏的功耗;点灯控制信号产生部分获得三色LED光源的点灯控制信号RLED、GLED和BLED信号。

存储器控制电路的设计

存储器控制电路的结构框图如图4所示,该部分电路所实现的主要功能是产生21位地址信号、写控制信号W、读控制信号G,可以分为写地址发生器、读地址发生器和读写切换开关3部分。

写地址发生器的核心是一个21位计数器和一个加法器,在彩色时序显示存储中,需要将每组存储器分为3个区,分别存储红绿蓝图像数据,每一帧彩色图像分解为3帧分别存储。这样每个区需要的存储空间为1280×256=327680,所以写地址发生电路实际上可以使用一个21位的计数器来产生地址信号并分别与0、327680、655360相加而实现。这样在一帧的时间之内,分别存储了各一帧的红绿蓝图像。

asic

读地址发生器的功能实际上就是产生一个不断递增的地址信号,这可以通过计数器来实现:根据行同步信号开始产生地址,根据场同步信号开始读取数据。

读写切换是实现实时视频显示的关键所在,在一帧的时间里,从一组存储器向LCoS显示屏输出图像数据,同时通过数据变换模块往另一组存储器里写图像数据,在下一帧时间里将读写切换过来,这样不断交替进行,不断向显示屏输出连续的视频数据,实现实时显示。

LCoS彩色时序控制器的版图设计

本文采取全定制设计技术进行该电路的版图设计,首先根据0.35mm CMOS工艺建立标准元件库,使用Tanner Research 公司的L-EDIT进行版图的生成和后仿真验证,最终获得了整个LCoS彩色时序控制器ASIC的版图。芯片核心部分大小约为0.4mm×0.5mm,最高工作频率可达100MHz。

责任编辑:gt

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分