1-wire系统中TM卡的单片机等效替换

控制/MCU

1890人已加入

描述

1  TM卡简介

  TM(Touch Memory)卡是美国Dallas公司的专利产品。它采用单线协议通信,通过瞬间碰触完成数据读写,既具有非接触式IC卡的易操作性,又具有接触式IC卡的廉价性,是当前性价比最优秀的IC卡之一。它的外形类似于一个钮扣(button)电池,可镶嵌于卡片、钥匙扣等物体上。

  TM卡通过一个多功能器将数据线、地址线、控制线和电源线合并为1根线,实现单线通信。当主机加电时,TM卡通过500 kΩ和50 Ω阻抗之间的切换来响应主机,用信号被拉低的时长(长或短)来表示数字逻辑(长为1,短为0)。由于阻抗切换的幅度为10 000∶1,因此,触点的接触电阻不会影响数字信号的辨识。

2  1wire通信协议

  单总线即只有1根数据线, 系统中的数据交换、控制都由这根线完成。设备(主机或从机)通过一个漏极开路或三态端口连至该数据线, 以允许设备在不发送数据时能够释放总线, 而让其他设备使用总线。单总线通常要求外接一个约为4.7 kΩ 的上拉电阻, 这样, 当总线闲置时, 其状态为高电平。主机和从机之间的通信可通过3个步骤完成: 初始化1wire 器件;识别1wire 器件;交换数据。由于它们是主从结构,只有主机呼叫从机时, 从机才能应答, 因此主机访问1wire 器件都必须严格遵循单总线命令序列, 即初始化、ROM 命令、功能命令。如果出现序列混乱,1wire 器件将不响应主机(搜索ROM 命令,报警搜索命令除外)。

  SMC1990A1是具有工厂激光刻度的64位ROM ID码,其中包括48位的序列号、1个8位的CRC编码和1个8位的产品系列号。数据遵循单总线协议传输,用于读和写的电源由数据线本身提供,而不需要提供外部电源。

3  SMC1990A1的等效替换

  单总线技术具有节省I/O口线资源,线路简单,硬件开支少,成本低,便于总线扩展和维护等优点。在分布式测控系统中有着广泛的应用。在实际应用过程中,可能会出现TM卡丢失和损坏的情况,如果发生此类情况,往往需要根据一个新TM卡来设置多个采集点的权限。如果采集点设置得很多,将浪费大量的人力。此时,利用单片机来替换已丢失或损坏的TM卡就显得很有必要。

3.1  系统硬件组成

  系统采用AT89C51作为控制器,并采用24 MHz晶振。为了能尽量适应标准的单总线通信协议,晶振频率应尽量高。考虑到单总线通信协议所有的传输都是由主机发起的,因此为了尽快地响应主机,采用中断处理。选择AT89C51的INT0(即P3.2)作为SMC1990A1等效替换的正极。图1为TM卡的等效替换示意图。

TM
图1  TM卡的等效替换

3.2  系统软件设计

  对于SMC1990A1的等效替换,主要是对其时序的分析。对于SMC1990A1子设备,主要的编程是针对主机而言的,传输都是由主机发起的。现在改为单片机模拟SMC1990A1子设备(现称为“从机”)。

TM
图2  初始化时序

  首先,初始化时序,如图2所示。主机首先发送一个复位脉冲,历时tRETL(最短为480 μs的低电平信号),然后释放总线并进入接收状态。从机在检测到总线的上升沿后,等待tPDH时间后,从机拉低总线发出存在脉冲,历时tPDL(低电平,持续60~240 μs),然后释放总线。释放总线通过拉高总线实现。

  对应于从机,初始化时序的中断服务程序流程如图3所示。

TM
图3  初始化时序的中断服务程序流程

  下面是主机写0和写1时序。在初始化时序后,当主机总线从高电平拉至低电平时,就产生写时间隙。在开始15 μs之内,应将所需写的位送到总线上,从机在开始后15 ~60 μs间对总线采样。若为低电平,写入的位是0,如图4所示;若为高电平,写入的位是1,如图5所示。连续写多位间的间隙tREC应大于1 μs。

TM
图4  主机写0时序

TM
图5  主机写1时序

  对应于从机,是等待主机命令。从机等待主机命令的中断服务程序流程如图6所示。

TM
图6  从机等待主机命令的中断服务程序流程

  最后是主机读数据时序,如图7所示。主机总线在开始时刻从高电平拉至低电平时,总线只需保持低电平1~7 μs。之后在tLOWR时刻释放总线,一般在tRDV时刻采样总线(15 μs处),读时间隙在tLOWR与tRDV之间有效。从机必须在tRDV时刻前拉高或拉低总线,主机在tRDV时刻采样,并在60~120 μs内释放总线。

TM
图7  主机读数据时序

  对从机来说,则为发送64位ID处理。程序处理的难点在于从机必须在15 μs之前拉高或拉低总线,以供主机在15 μs处采样总线。程序通过判断位地址00H处的状态来实现此功能。通过判断位地址01H处的状态来确定发送位0或发送位1。从机发送64位ID处理的中断服务程序流程如图8所示。

TM
图8  从机发送64位ID处理的中断服务程序流程

  在完整地实现一次ROM功能的过程中,从机首先等待主机发送的复位脉冲,待检测到后发图9实现ROM功能的流程送存在脉冲应答。随后,从机开始接收主机发送的ROM命令,并将其保存,以判断随后的操作。最后,从机发送TM卡的64位标识码,完成一次ROM命令的执行。实现ROM功能的流程如图9所示。

  单片机的汇编程序如下:

    ORG0000H
    AJMPInit//跳到Init段
    ORG0003H
    AJMPJudge//跳到中断服务程序
  Init: //初始化
    MOVDPTR,#ID//ID表地址
    MOVR5,#001H
    MOVR7,#000H
    CLR00H
    SETB01H
    SETBP3.2
    LCALLDelay10s
    CLRP3.2//拉低总线叫醒主机
    LCALLDelay100us
    SETBP3.2
    SETBEA
    SETBIT0
    SETBEX0
  MAIN:  AJMPMAIN//主循环
  Judge:CLREX0//判断执行动作,关中断
    JNB00H,SecondJ//跳到二次判断
  ID_IN:JB01H,SEND1//从机发送TM卡64位标识码
    CLRP3.2//发送位0
  SEND1:SETBP3.2 //发送位1
    LCALLDelay30us
    MOVA,R5//R5循环左移
    RLA
    MOVR5,A
    MOVA,#00H
    MOVCA,@A+DPTR
    ANLA,R5
    CLR01H//设置01H状态
    JZRelease1
    SETB01H
  Release1:SETBP3.2
    MOVA,R5
    ANLA,#080H//判断字节发送完否
    JZINTEND
    INCDPTR
    AJMPINTEND//跳到中断结束
  SecondJ:MOVA,R7//二次判断
    JZWaitReply//跳到执行应答判断是否命令接收结束
    ANLA,#008H
    JZWaitOrder//跳到执行接收命令
    SETB00H
  WaitOrder: LCALLDelay15us//接收命令
    NOP
    NOP
    MOVA,P3//采样P3.2
    ANLA,#004H
    JZSAVE_R6
    MOVA,#001H
  SAVE_R6:
    ORLA,R6 //保存命令到R6
    RRA
    MOVR6,A
  RLOOP1:
    MOVA,P3//判断主机的发送状态,是否返回
    ANLA,#004H
    JZRLOOP1
    AJMPINTEND//跳到中断结束
  WaitReply://执行应答
  RLOOP:MOVA,P3//判断主机的复位信号
    ANLA,#004H
    JZRLOOP
    LCALLDelay30us
    CLRP3.2//从机拉低电平应答
    LCALLDelay150us
    SETBP3.2//释放总线
    NOP
    NOP
    NOP
    NOP
  INTEND:
    INCR7
    CLRIE0
    SETBEX0//开中断
    RETI//中断返回
  ID:DB001H//ID表
    DB0C3H
    DB04DH
    DB057H
    DB033H
    DB022H
    DB000H
    DB0D2H

  本文代码在实际运用中得到了很好的验证,能够稳定地替代SMC1990A1实现TM卡的ROM功能,极大地方便了权限管理人员用于丢失或损坏的TM卡的权限管理。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 相关推荐
  • TM

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分