5G中如何运用的模拟波束赋形技术

通信网络

650人已加入

描述

5G要实现20Gbps的峰值速率,主要利用了更大的带宽和更多的数据流。高频段容易获得超过100MHz的连续带宽,并且高频段的天线阵子长度短(波长的一半),有利于在合理尺寸的天线上实现多流空分复用(SDMA)传输,而波束赋形正是该复用方式的最重要的实现技术。在4G阶段,我们使用的智能天线都是采用数字波束赋形技术,该技术能够获得较大的天线增益,并且可以支持多流、多用户的不同传输模式(TM)。数字波束赋形的幅度和相位权值作用于基带(中频)信号,即发射端工作于进入DAC之前,接受端工作于ADC之后。因此,要求天线阵列数与射频(RF)链一一对应,即每条RF链路都需要一套独立的DAC/ADC、混频器、滤波器和功放器。当5G大规模阵列天线需要128个、甚至256个阵列之后,就存在严重的问题——RF链越多需要的尺寸越大、功耗也越大,因此无法满足实际建网的需要。

波束成形

数字波束赋形

波束成形

模拟波束赋形

模拟波束赋形技术将幅度和相位权值作用于模拟信号,在发射端,数字信号(RF链)经过DAC之后先由功分器分解为多路模拟信号之后再赋形;在接收端,多个天线阵子的模拟信号先合并(合路器)之后再进入ADC。由于多路模拟信号共用一套DAC/ADC、功分器和混频器,整个系统的功耗就显著下降。同时,功放器和滤波器可以细化到每一个阵列,可以采用小功率,但线性度更好的器件来代替。

波束成形

尽管模拟波束赋形有这么多的优势,但在5G建网初期仍有可能还是以数字波束赋形技术为主。在已有的移动蜂窝网络中,天线是无源器件,实现简单,价格低廉,定位为基站设备的配套器件。但在5G网络中,天线将成为有源器件,内置有功分器、合路器、移相器、功放器和滤波器等一系列器件,天线的技术含量将明显提升。天线不再只是简单的配套器件,而是实现5G网络性能的关键器件之一。

降低功耗和支持具有许多尺寸小的元件的天线阵列的能力被认为是5G商业化的关键,目前存在的主要技术难点有:

一、高频有源器件

高频、大带宽的天线主要在卫星、军用雷达中使用,国内在这方面相对能力较差。美国拥有高频宽带滤波器技术、高频模数和数模转换器技术全球领先的公司,如LINEAR、Analog、TI、Xilinx等,这些高频器件一般为IC芯片,也是美国限制对华高技术出口的产品之一。

二、相位噪声抑制

移相器的处理精度决定了各模拟波束的一致性,对于天线器件的性能有决定性的作用。相位噪声就是由于移相器的相位、幅度误差和相位变化引入的。锁相环(PLL)产生的是宽带、稳定的相位噪声,对系统性能影响较大。晶体振荡器(TCXO)产生的是窄带、非稳定的相位噪声,可以通过信道估计给予消除(通过相位噪声跟踪参考信号(PTRS))。相位噪声对于毫米波影响尤为显著,会严重降低系统的频谱效率。

三、分布式功放

不同于数字波束赋形技术往往采用单一的高功率放大器,其技术门槛高,能耗大。模拟波束赋形技术可以分布式功放器相结合,以多个低功率放大器代替一个高功率放大器,即有有利于降低成本,也能够提供系统的健壮性。德国的一家研究所开发出了一种以氮化镓(GaN)技术制造的高功率放大器电晶体。

综上,5G的天线将与RRU深度集成,并且成为整个系统中比较有技术含量的关键器件之一。不管采用哪种波束赋形技术,天线都将与RRU实现一体化——采用数字波束赋形技术端口数量太大需要集成,采用模拟波束赋形技术RRU的部分射频处理需要下沉到天线而集成。

打开APP阅读更多精彩内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

全部0条评论

快来发表一下你的评论吧 !

×
20
完善资料,
赚取积分